OFFSET
1,1
COMMENTS
(-57, a(1)) and (A129625(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+233)^2 = y^2.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (251+66*sqrt(2))/233 for n mod 3 = {0, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (82611+44030*sqrt(2))/233^2 for n mod 3 = 1.
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (0,0,6,0,0,-1).
FORMULA
a(n) = 6*a(n-3) - a(n-6) for n > 6; a(1)=185, a(2)=233, a(3)=317, a(4)=793, a(5)=1165, a(6)=1717.
G.f.: (1-x)*(185 +418*x +735*x^2 +418*x^3 +185*x^4)/(1-6*x^3+x^6).
a(3*k-1) = 233*A001653(k) for k >= 1.
EXAMPLE
MATHEMATICA
LinearRecurrence[{0, 0, 6, 0, 0, -1}, {185, 233, 317, 793, 1165, 1717}, 50] (* G. C. Greubel, Mar 29 2018 *)
PROG
(PARI) {forstep(n=-60, 1100000000, [3, 1], if(issquare(2*n^2+466*n+54289, &k), print1(k, ", ")))};
(Magma) I:=[185, 233, 317, 793, 1165, 1717]; [n le 6 select I[n] else 6*Self(n-3) - Self(n-6): n in [1..30]]; // G. C. Greubel, Mar 29 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, Apr 11 2009
STATUS
approved