login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157297
Positive numbers y such that y^2 is of the form x^2+(x+233)^2 with integer x.
4
185, 233, 317, 793, 1165, 1717, 4573, 6757, 9985, 26645, 39377, 58193, 155297, 229505, 339173, 905137, 1337653, 1976845, 5275525, 7796413, 11521897, 30748013, 45440825, 67154537, 179212553, 264848537, 391405325, 1044527305, 1543650397
OFFSET
1,1
COMMENTS
(-57, a(1)) and (A129625(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+233)^2 = y^2.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (251+66*sqrt(2))/233 for n mod 3 = {0, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (82611+44030*sqrt(2))/233^2 for n mod 3 = 1.
FORMULA
a(n) = 6*a(n-3) - a(n-6) for n > 6; a(1)=185, a(2)=233, a(3)=317, a(4)=793, a(5)=1165, a(6)=1717.
G.f.: (1-x)*(185 +418*x +735*x^2 +418*x^3 +185*x^4)/(1-6*x^3+x^6).
a(3*k-1) = 233*A001653(k) for k >= 1.
EXAMPLE
(-57, a(1)) = (-57, 185) is a solution: (-57)^2+(-57+233)^2 = 3249+30976 = 34225 = 185^2.
(A129625(1), a(2)) = (0, 233) is a solution: 0^2+(0+233)^2 = 54289 = 233^2.
(A129625(3), a(4)) = (432, 793) is a solution: 432^2+(432+233)^2 = 186624+442225 = 628849 = 793^2.
MATHEMATICA
LinearRecurrence[{0, 0, 6, 0, 0, -1}, {185, 233, 317, 793, 1165, 1717}, 50] (* G. C. Greubel, Mar 29 2018 *)
PROG
(PARI) {forstep(n=-60, 1100000000, [3, 1], if(issquare(2*n^2+466*n+54289, &k), print1(k, ", ")))};
(Magma) I:=[185, 233, 317, 793, 1165, 1717]; [n le 6 select I[n] else 6*Self(n-3) - Self(n-6): n in [1..30]]; // G. C. Greubel, Mar 29 2018
CROSSREFS
Cf. A129625, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A157298 (decimal expansion of (251+66*sqrt(2))/233), A157299 (decimal expansion of (82611+44030*sqrt(2))/233^2).
Sequence in context: A353388 A262053 A362096 * A156059 A244248 A129311
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, Apr 11 2009
STATUS
approved