login
A262053
Euler pseudoprimes to base 6: composite integers such that abs(6^((n - 1)/2)) == 1 mod n.
6
185, 217, 301, 481, 1111, 1261, 1333, 1729, 2465, 2701, 3421, 3565, 3589, 3913, 5713, 6533, 8365, 10585, 11041, 11137, 12209, 14701, 15841, 17329, 18361, 20017, 21049, 22049, 29341, 31021, 31621, 34441, 36301, 38081, 39305, 39493, 41041, 43621, 44801, 46657
OFFSET
1,1
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..86 from Daniel Lignon)
MATHEMATICA
eulerPseudoQ[n_?PrimeQ, b_] = False; eulerPseudoQ[n_, b_] := Block[{p = PowerMod[b, (n - 1)/2, n]}, p == Mod[1, n] || p == Mod[-1, n]]; Select[2 Range[25000] + 1, eulerPseudoQ[#, 6] &] (* Michael De Vlieger, Sep 09 2015, after Jean-François Alcover at A006970 *)
PROG
(PARI) for(n=1, 1e5, if( Mod(6, (2*n+1))^n == 1 || Mod(6, (2*n+1))^n == 2*n && bigomega(2*n+1) != 1 , print1(2*n+1", "))); \\ Altug Alkan, Oct 11 2015
CROSSREFS
Cf. A006970 (base 2), A262051 (base 3), A262052 (base 5), this sequence (base 6), A262054 (base 7), A262055 (base 8).
Sequence in context: A139265 A243628 A353388 * A362096 A157297 A156059
KEYWORD
nonn
AUTHOR
Daniel Lignon, Sep 09 2015
STATUS
approved