|
|
A251249
|
|
T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with no 2X2 subblock having the sum of its diagonal elements less than the minimum of its antidiagonal elements
|
|
8
|
|
|
75, 621, 621, 5139, 14265, 5139, 42525, 327753, 327753, 42525, 351891, 7530633, 20904689, 7530633, 351891, 2911869, 173028393, 1333268433, 1333268433, 173028393, 2911869, 24095475, 3975606801, 85032883789, 236035946835
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Table starts
......75........621..........5139............42525...............351891
.....621......14265........327753..........7530633............173028393
....5139.....327753......20904689.......1333268433..........85032883789
...42525....7530633....1333268433.....236035946835.......41786532918513
..351891..173028393...85032883789...41786532918513....20534495636679387
.2911869.3975606801.5423196612609.7397658897202791.10090935221593972941
|
|
LINKS
|
R. H. Hardin, Table of n, a(n) for n = 1..264
|
|
FORMULA
|
Empirical for column k:
k=1: a(n) = 9*a(n-1) -6*a(n-2)
k=2: a(n) = 27*a(n-1) -94*a(n-2) +36*a(n-3) -4*a(n-4) -36*a(n-5)
k=3: [order 10]
k=4: [order 24]
k=5: [order 51]
|
|
EXAMPLE
|
Some solutions for n=2 k=4
..0..0..0..0..0....0..0..0..2..2....0..0..0..2..0....0..0..0..2..0
..0..2..1..1..0....0..0..1..1..2....0..0..0..0..1....0..1..1..1..0
..0..2..1..2..2....0..0..2..1..1....0..2..0..1..2....0..0..0..1..0
|
|
CROSSREFS
|
Column 1 is A190983(n+2)
Sequence in context: A129625 A133382 A199901 * A264673 A320618 A218094
Adjacent sequences: A251246 A251247 A251248 * A251250 A251251 A251252
|
|
KEYWORD
|
nonn,tabl
|
|
AUTHOR
|
R. H. Hardin, Dec 01 2014
|
|
STATUS
|
approved
|
|
|
|