login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190983
a(n) = 9*a(n-1) - 6*a(n-2), with a(0)=0, a(1)=1.
3
0, 1, 9, 75, 621, 5139, 42525, 351891, 2911869, 24095475, 199388061, 1649919699, 13652948925, 112977022131, 934875505629, 7736017417875, 64014903727101, 529718029036659, 4383372838967325, 36272047376485971, 300148189354569789, 2483701419932212275
OFFSET
0,3
FORMULA
G.f.: x/(1-9*x+6*x^2). - Philippe Deléham, Oct 12 2011
E.g.f.: (2/sqrt(57))*exp(9*x/2)*sinh(sqrt(57)*x/2). - G. C. Greubel, Aug 26 2022
MATHEMATICA
LinearRecurrence[{9, -6}, {0, 1}, 50]
With[{s=Sqrt[57]}, Table[Simplify[(2^(-1-x) (4s (9+s)^x-(9-s)^x (171+ 23s)))/ (57(9+s))], {x, 30}]] (* Harvey P. Dale, Sep 01 2014 *)
PROG
(Magma) [n le 2 select n-1 else 9*Self(n-1) - 6*Self(n-2):n in [1..22]]; // Marius A. Burtea, Jan 22 2020
(Magma) R<x>:=PowerSeriesRing(Integers(), 22); [0] cat Coefficients(R!( x/(1-9*x+6*x^2))); // Marius A. Burtea, Jan 22 2020
(SageMath)
A190983 = BinaryRecurrenceSequence(9, -6, 0, 1)
[A190983(n) for n in (0..30)] # G. C. Greubel, Aug 26 2022
CROSSREFS
Cf. A190958 (index to generalized Fibonacci sequences).
Sequence in context: A210045 A125397 A095249 * A254664 A223204 A351513
KEYWORD
nonn
AUTHOR
STATUS
approved