|
|
A133382
|
|
Numbers n such that gcd( n!-1, 2^n-1 ) is neither 1 nor 2n+1.
|
|
0
|
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
This subsequence of A068483 lists the rare exceptions for which gcd( N!, 2^N-1 ) <> 2N+1. Is it finite? Are all elements multiples of 5?
|
|
LINKS
|
Table of n, a(n) for n=1..3.
|
|
PROG
|
(PARI) for(n=1, 10^5, if((g=gcd(n!-1, 2^n-1)-1) & g!=2*n, print(n", ")))
|
|
CROSSREFS
|
Cf. A068483, A068480.
Sequence in context: A223452 A015223 A129625 * A199901 A251249 A264673
Adjacent sequences: A133379 A133380 A133381 * A133383 A133384 A133385
|
|
KEYWORD
|
nonn,bref
|
|
AUTHOR
|
M. F. Hasler, Oct 28 2007
|
|
STATUS
|
approved
|
|
|
|