login
A069190
Centered 24-gonal numbers.
20
1, 25, 73, 145, 241, 361, 505, 673, 865, 1081, 1321, 1585, 1873, 2185, 2521, 2881, 3265, 3673, 4105, 4561, 5041, 5545, 6073, 6625, 7201, 7801, 8425, 9073, 9745, 10441, 11161, 11905, 12673, 13465, 14281, 15121, 15985, 16873, 17785, 18721, 19681, 20665, 21673
OFFSET
1,2
COMMENTS
Sequence found by reading the line from 1, in the direction 1, 25, ..., in the square spiral whose vertices are the generalized octagonal numbers A001082. Semi-axis opposite to A135453 in the same spiral. - Omar E. Pol, Sep 16 2011
FORMULA
a(n) = 12*n^2 - 12*n + 1.
a(n) = 24*n + a(n-1) - 24 with a(1)=1. - Vincenzo Librandi, Aug 08 2010
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(1)=1, a(2)=25, a(3)=73. - Harvey P. Dale, Jul 17 2011
G.f.: x*(1+22*x+x^2)/(1-x)^3. - Harvey P. Dale, Jul 17 2011
Binomial transform of [1, 24, 24, 0, 0, 0, ...] and Narayana transform (cf. A001263) of [1, 24, 0, 0, 0, ...]. - Gary W. Adamson, Jul 26 2011
From Amiram Eldar, Jun 21 2020: (Start)
Sum_{n>=1} 1/a(n) = Pi*tan(Pi/sqrt(6))/(4*sqrt(6)).
Sum_{n>=1} a(n)/n! = 13*e - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 13/e - 1. (End)
E.g.f.: exp(x)*(1 + 12*x^2) - 1. - Stefano Spezia, May 31 2022
EXAMPLE
a(5) = 241 because 12*5^2 - 12*5 + 1 = 300 - 60 + 1 = 241.
MATHEMATICA
FoldList[#1 + #2 &, 1, 24 Range@ 45] (* Robert G. Wilson v *)
Table[12n^2-12n+1, {n, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {1, 25, 73}, 50] (* Harvey P. Dale, Jul 17 2011 *)
PROG
(PARI) a(n)=12*n^2-12*n+1 \\ Charles R Greathouse IV, Sep 24 2015
KEYWORD
nonn,easy
AUTHOR
Terrel Trotter, Jr., Apr 10 2002
EXTENSIONS
More terms from Harvey P. Dale, Jul 17 2011
STATUS
approved