login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A069193
a(n) = Sum_{d|n} d*phi(n)/phi(d).
2
1, 3, 5, 10, 9, 15, 13, 28, 24, 27, 21, 50, 25, 39, 45, 72, 33, 72, 37, 90, 65, 63, 45, 140, 70, 75, 99, 130, 57, 135, 61, 176, 105, 99, 117, 240, 73, 111, 125, 252, 81, 195, 85, 210, 216, 135, 93, 360, 140, 210, 165, 250, 105, 297, 189, 364, 185, 171, 117, 450
OFFSET
1,2
LINKS
FORMULA
Multiplicative with a(p^e) = ((e+1)*p - 1) * p^(e-1). - Amiram Eldar, Sep 15 2019
a(n) = Sum_{k=1..n, gcd(n,k) = 1} sigma(gcd(n,k-1)). - Ilya Gutkovskiy, Sep 24 2021
Dirichlet g.f.: zeta(s-1)^2 * Product_{p prime} (1 - 1/p^s + 1/p^(2*s-1)). - Amiram Eldar, Sep 21 2023
MAPLE
with(numtheory):for n from 1 to 200 do di := sort(convert(divisors(n), list)): a[n] := sum(di[i]*phi(n)/phi(di[i]), i=1..nops(di)):od:seq(a[k], k=1..200);
MATHEMATICA
f[p_, e_] := ((e+1)*p - 1) * p^(e-1) ; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 15 2019 *)
PROG
(PARI) a(n) = sumdiv(n, d, d*eulerphi(n)/eulerphi(d)); \\ Michel Marcus, Sep 15 2019
(Magma) [&+[d*EulerPhi(n) div EulerPhi(d):d in Divisors(n)]:n in [1..60]]; // Marius A. Burtea, Sep 15 2019
CROSSREFS
Cf. A000010.
Sequence in context: A328070 A286592 A176629 * A078430 A372882 A345892
KEYWORD
mult,easy,nonn
AUTHOR
Vladeta Jovovic, Apr 10 2002
EXTENSIONS
More terms from Sascha Kurz, Feb 02 2003
STATUS
approved