login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A069194
a(n) = Sum_{d|n} (n/d)*phi(n)/phi(d).
1
1, 3, 7, 13, 21, 21, 43, 53, 64, 63, 111, 91, 157, 129, 147, 213, 273, 192, 343, 273, 301, 333, 507, 371, 526, 471, 577, 559, 813, 441, 931, 853, 777, 819, 903, 832, 1333, 1029, 1099, 1113, 1641, 903, 1807, 1443, 1344, 1521, 2163, 1491, 2108, 1578, 1911, 2041
OFFSET
1,2
LINKS
FORMULA
Multiplicative with a(p^e) = p^e*(p^e - p^(e-1)) + (p^(2*e) - 1)/(p^2 - 1). - Amiram Eldar, Sep 15 2019
Sum_{k=1..n} a(k) ~ c * n^3, where c = (zeta(3)/3) * Product_{p prime} (1 - 1/p^2 + 1/p^5) = 0.2550149528... . - Amiram Eldar, Oct 28 2022
MAPLE
for i from 1 to 100 do d := divisors(i): a[i] := i*phi(i)*sum(1/d[j]/phi(d[j]), j=1..nops(d)) od:seq(a[j], j=1..100);
MATHEMATICA
f[p_, e_] := p^e*(p^e - p^(e-1)) + (p^(2*e) - 1)/(p^2 - 1) ; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 15 2019 *)
PROG
(Magma) [&+[(n div d)*EulerPhi(n) div EulerPhi(d):d in Divisors(n)]:n in [1..52]]; // Marius A. Burtea, Sep 15 2019
(PARI) a(n) = sumdiv(n, d, n/d*eulerphi(n)/eulerphi(d)); \\ Michel Marcus, Sep 15 2019
CROSSREFS
Sequence in context: A022777 A076950 A169633 * A100531 A032409 A073896
KEYWORD
mult,easy,nonn
AUTHOR
Vladeta Jovovic, Apr 10 2002
EXTENSIONS
More terms from Sascha Kurz, Jan 03 2003
STATUS
approved