OFFSET
1,2
LINKS
Ivan Panchenko, Table of n, a(n) for n = 1..1000
Eric Weisstein's World of Mathematics, Centered Polygonal Numbers
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
a(n) = (23*n^2 - 23*n + 2)/2.
a(n) = 23*n+a(n-1)-23 (with a(1)=1). - Vincenzo Librandi, Aug 08 2010
From Amiram Eldar, Jun 21 2020: (Start)
Sum_{n>=1} 1/a(n) = 2*Pi*tan(sqrt(15/23)*Pi/2)/sqrt(345).
Sum_{n>=1} a(n)/n! = 25*e/2 - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 25/(2*e) - 1. (End)
E.g.f.: exp(x)*(1 + 23*x^2/2)-1. - Nikolaos Pantelidis, Feb 06 2023
MATHEMATICA
FoldList[#1 + #2 &, 1, 23 Range@ 45] (* Robert G. Wilson v, Feb 02 2011 *)
PROG
(PARI) a(n)=(23*n^2-23*n+2)/2 \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Terrel Trotter, Jr., Apr 09 2002
STATUS
approved