login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337156
Numbers k such that the k-th triangular number has all its prime factors congruent to 1 mod 4.
2
1, 25, 73, 145, 169, 193, 289, 313, 337, 409, 457, 481, 577, 625, 673, 697, 745, 793, 841, 865, 985, 1009, 1129, 1153, 1201, 1249, 1321, 1345, 1369, 1417, 1465, 1489, 1513, 1537, 1585, 1657, 1681, 1753, 1801, 1873, 1993, 2017, 2041, 2137, 2257, 2305, 2329, 2377, 2425, 2473
OFFSET
1,2
COMMENTS
The k-th triangular number t_k is given as t_k = k(k+1)/2. The t_k associated with this sequence form the intersection of A004613 and A000217.
Apart from 1, numbers whose prime factors are all congruent to 1 mod 4 are also known as primitive hypotenuse numbers because they are candidates for the hypotenuse of primitive right triangles.
For t_k to be a primitive hypotenuse number all its divisors must be congruent to 1 mod 4. Therefore k has to be odd and congruent to 1 mod 8.
LINKS
EXAMPLE
a(2) = 25 because the 25th triangular number is 325, the prime factorization of 325 is 5^2*13, and 5,13 are both congruent to 1 mod 4. It is the second such occurrence.
MATHEMATICA
lst={}; Do[p=1+8n; If[Union@Mod[First/@FactorInteger[p(p+1)/2], 4]=={1}, AppendTo[lst, p]], {n, 0, 10^3}]; lst
PROG
(PARI) isok(k) = my(f=factor(k*(k+1)/2)[, 1]~); #select(x->((x%4)==1), f) == #f; \\ Michel Marcus, Nov 22 2020
CROSSREFS
Sequence in context: A182323 A255184 A235941 * A069190 A124718 A126379
KEYWORD
nonn
AUTHOR
Frank M Jackson, Nov 21 2020
STATUS
approved