login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337155
a(n) = 5^n * (n!)^2 * Sum_{k=0..n} 1 / ((-5)^k * (k!)^2).
3
1, 4, 81, 3644, 291521, 36440124, 6559222321, 1607009468644, 514243029966081, 208268427136262804, 104134213568131402001, 63001199208719498210604, 45360863430278038711634881, 38329929598584942711331474444, 37563331006613243857104844955121, 42258747382439899339242950574511124
OFFSET
0,2
FORMULA
Sum_{n>=0} a(n) * x^n / (n!)^2 = BesselJ(0,2*sqrt(x)) / (1 - 5*x).
a(0) = 1; a(n) = 5 * n^2 * a(n-1) + (-1)^n.
MATHEMATICA
Table[5^n n!^2 Sum[1/((-5)^k k!^2), {k, 0, n}], {n, 0, 15}]
nmax = 15; CoefficientList[Series[BesselJ[0, 2 Sqrt[x]]/(1 - 5 x), {x, 0, nmax}], x] Range[0, nmax]!^2
PROG
(PARI) a(n) = 5^n * (n!)^2 * sum(k=0, n, 1 / ((-5)^k * (k!)^2)); \\ Michel Marcus, Jan 28 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jan 27 2021
STATUS
approved