OFFSET
1,2
COMMENTS
Equals binomial transform of [1, 17, 17, 0, 0, 0, ...]. - Gary W. Adamson, Mar 26 2010
LINKS
Ivan Panchenko, Table of n, a(n) for n = 1..1000
Eric Weisstein's World of Mathematics, Centered Polygonal Numbers
Index entries for linear recurrences with constant coefficients, signature (3,-3,1)
FORMULA
a(n) = (17*n^2 - 17*n + 2)/2.
a(n) = 17*n + a(n-1) - 17 (with a(1)=1). - Vincenzo Librandi, Aug 08 2010
G.f.: x*(1+15*x+x^2) / (1-x)^3. - R. J. Mathar, Feb 04 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=1, a(1)=18, a(2)=52. - Harvey P. Dale, Jun 05 2011
Narayana transform (A001263) of [1, 17, 0, 0, 0, ...]. - Gary W. Adamson, Jul 28 2011
From Amiram Eldar, Jun 21 2020: (Start)
Sum_{n>=1} 1/a(n) = 2*Pi*tan(3*Pi/(2*sqrt(17)))/(3*sqrt(17)).
Sum_{n>=1} a(n)/n! = 19*e/2 - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 19/(2*e) - 1. (End)
E.g.f.: exp(x)*(1 + 17*x^2/2) - 1. - Stefano Spezia, May 31 2022
EXAMPLE
a(5) = 171 because (17*5^2 - 17*5 + 2)/2 = (425 - 85 + 2)/2 = 342/2 = 171.
MAPLE
MATHEMATICA
FoldList[#1 + #2 &, 1, 17 Range@ 45] (* Robert G. Wilson v, Feb 02 2011 *)
Table[(17n^2-17n+2)/2, {n, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {1, 18, 52}, 50] (* Harvey P. Dale, Jun 05 2011 *)
PROG
(PARI) a(n)=17*binomial(n, 2)+1 \\ Charles R Greathouse IV, Jun 05 2011
(Magma) [ (17*n^2 - 17*n + 2)/2 : n in [1..50] ]; // Wesley Ivan Hurt, Jun 09 2014
CROSSREFS
KEYWORD
easy,nice,nonn
AUTHOR
Terrel Trotter, Jr., Apr 07 2002
EXTENSIONS
Typo in formula fixed by Omar E. Pol, Dec 22 2008
STATUS
approved