login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A069130
Centered 17-gonal numbers: (17*n^2 - 17*n + 2)/2.
7
1, 18, 52, 103, 171, 256, 358, 477, 613, 766, 936, 1123, 1327, 1548, 1786, 2041, 2313, 2602, 2908, 3231, 3571, 3928, 4302, 4693, 5101, 5526, 5968, 6427, 6903, 7396, 7906, 8433, 8977, 9538, 10116, 10711, 11323, 11952, 12598, 13261, 13941, 14638, 15352
OFFSET
1,2
COMMENTS
Equals binomial transform of [1, 17, 17, 0, 0, 0, ...]. - Gary W. Adamson, Mar 26 2010
FORMULA
a(n) = (17*n^2 - 17*n + 2)/2.
a(n) = 17*n + a(n-1) - 17 (with a(1)=1). - Vincenzo Librandi, Aug 08 2010
G.f.: x*(1+15*x+x^2) / (1-x)^3. - R. J. Mathar, Feb 04 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=1, a(1)=18, a(2)=52. - Harvey P. Dale, Jun 05 2011
Narayana transform (A001263) of [1, 17, 0, 0, 0, ...]. - Gary W. Adamson, Jul 28 2011
From Amiram Eldar, Jun 21 2020: (Start)
Sum_{n>=1} 1/a(n) = 2*Pi*tan(3*Pi/(2*sqrt(17)))/(3*sqrt(17)).
Sum_{n>=1} a(n)/n! = 19*e/2 - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 19/(2*e) - 1. (End)
E.g.f.: exp(x)*(1 + 17*x^2/2) - 1. - Stefano Spezia, May 31 2022
EXAMPLE
a(5) = 171 because (17*5^2 - 17*5 + 2)/2 = (425 - 85 + 2)/2 = 342/2 = 171.
MAPLE
A069130:=n->(17*n^2 - 17*n + 2)/2; seq(A069130(n), n=1..50); # Wesley Ivan Hurt, Jun 09 2014
MATHEMATICA
FoldList[#1 + #2 &, 1, 17 Range@ 45] (* Robert G. Wilson v, Feb 02 2011 *)
Table[(17n^2-17n+2)/2, {n, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {1, 18, 52}, 50] (* Harvey P. Dale, Jun 05 2011 *)
PROG
(PARI) a(n)=17*binomial(n, 2)+1 \\ Charles R Greathouse IV, Jun 05 2011
(Magma) [ (17*n^2 - 17*n + 2)/2 : n in [1..50] ]; // Wesley Ivan Hurt, Jun 09 2014
CROSSREFS
Cf. centered polygonal numbers listed in A069190.
Sequence in context: A051870 A262454 A175815 * A299071 A124711 A126372
KEYWORD
easy,nice,nonn
AUTHOR
Terrel Trotter, Jr., Apr 07 2002
EXTENSIONS
Typo in formula fixed by Omar E. Pol, Dec 22 2008
STATUS
approved