login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A299071
Union_{odd primes p, n >= 3} {T_p(n)}, where T_m(x) = x*T_{m-1}(x) - T_{m-2}(x), m >= 2, T_0(x) = 2, T_1(x) = x (dilated Chebyshev polynomials of the first kind).
15
18, 52, 110, 123, 198, 488, 702, 724, 843, 970, 1298, 1692, 2158, 2525, 3330, 4048, 4862, 5778, 6726, 6802, 7940, 9198, 10084, 10582, 13752, 15550, 17498, 19602, 21868, 24302, 26910, 29698, 30248, 32672, 35838, 39603, 42770, 46548, 50542
OFFSET
1,1
COMMENTS
From a problem in A269254. For detailed theory, see [Hone].
Sequence avoids numbers of the form T_p(T_2(j)).
LINKS
Andrew N. W. Hone, et al., On a family of sequences related to Chebyshev polynomials, arXiv:1802.01793 [math.NT], 2018.
MATHEMATICA
maxT = 55000; maxn = 12;
T[0][_] = 2; T[1][x_] = x;
T[m_][x_] := T[m][x] = x T[m-1][x] - T[m-2][x];
TT = Table[T[p][n], {p, Prime[Range[2, maxn]]}, {n, 3, Prime[maxn]}] // Flatten // Union // Select[#, # <= maxT&]&;
avoid = Table[T[p][T[2][n]], {p, Prime[Range[2, maxn]]}, {n, 3, Prime[maxn] }] // Flatten // Union // Select[#, # <= maxT&]&;
Complement[TT, avoid] (* Jean-François Alcover, Nov 03 2018 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved