OFFSET
1,1
COMMENTS
Next term a(9) is too large (99 digits) to include here. - Ray Chandler, Sep 21 2003
These primes are the prime RMS numbers (A140480): primes p such that (1+p^2)/2 is a square r^2. Then r is a Pell number, A000129. - T. D. Noe, Jul 01 2008
Also prime numerators with an odd index in A001333. - Ctibor O. Zizka, Aug 13 2008
r in the above note of T. D. Noe is a prime Pell number (A000129) with an odd index. - Ctibor O. Zizka, Aug 13 2008
General recurrence is a(n) = (a(1)-1)*a(n-1) - a(n-2), a(1) >= 4, lim_{n->infinity} a(n) = x*(k*x+1)^n, k = a(1)-3, x = (1+sqrt((a(1)+1)/(a(1)-3)))/2. Examples in the OEIS: a(1)=4 gives A002878, primes in it A121534. a(1)=5 gives A001834, primes in it A086386. a(1)=6 gives A030221, primes in it not in the OEIS {29, 139, 3191, ...}. a(1)=7 gives A002315, primes in it A088165. a(1)=8 gives A033890, primes in it not in the OEIS (do there exist any ?). a(1)=9 gives A057080, primes in it not in the OEIS {71, 34649, 16908641, ...}. a(1)=10 gives A057081, primes in it not in the OEIS {389806471, 192097408520951, ...}. - Ctibor O. Zizka, Sep 02 2008
REFERENCES
Paulo Ribenboim, The New Book of Prime Number Records, 3rd edition, Springer-Verlag, New York, 1995, pp. 367-369.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..14
Morris Newman, Daniel Shanks, H. C. Williams, Simple groups of square order and an interesting sequence of primes, Acta Arith., 38 (1980/1981), pp. 129-140.
M. Newman, D. Shanks and L. L. Foster, Simple groups of square order (6176), The American Mathematical Monthly, Vol. 86, No. 4 (Apr., 1979), pp. 314-315.
The Prime Glossary, NSW numbers
FORMULA
a(n) mod A005850(n) = 1. - Altug Alkan, Mar 17 2016
PROG
(PARI) w=3+quadgen(32); forprime(p=2, 1e3, if(ispseudoprime(t=imag((1+w)*w^p)), print1(t", "))) \\ Charles R Greathouse IV, Apr 29 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Christian Schroeder, Sep 21 2003
EXTENSIONS
More terms from Ray Chandler, Sep 21 2003
STATUS
approved