login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294099
Rectangular array read by (upward) antidiagonals: A(n,k) = Sum_{j=0..k} (-1)^floor(j/2)*binomial(k-floor((j+1)/2), floor(j/2))*n^(k-j), n >= 1, k >= 0.
17
1, 1, 2, 1, 3, 1, 1, 4, 5, -1, 1, 5, 11, 7, -2, 1, 6, 19, 29, 9, -1, 1, 7, 29, 71, 76, 11, 1, 1, 8, 41, 139, 265, 199, 13, 2, 1, 9, 55, 239, 666, 989, 521, 15, 1, 1, 10, 71, 377, 1393, 3191, 3691, 1364, 17, -1, 1, 11, 89, 559, 2584, 8119, 15289, 13775, 3571, 19, -2
OFFSET
1,3
COMMENTS
This array is used to compute A269254: A269254(n) = least k such that A(n,k) is a prime, or -1 if no such k exists.
For detailed theory, see [Hone]. - L. Edson Jeffery, Feb 09 2018
The array can be extended to k<0 with A(n, k) = -A(n, -k-1) for all k in Z. - Michael Somos, Jun 19 2023
LINKS
Andrew N. W. Hone, et al., On a family of sequences related to Chebyshev polynomials, arXiv:1802.01793 [math.NT], 2018.
FORMULA
A(n,0) = 1, A(n,1) = n + 1, A(n,k) = n*A(n,k-1) - A(n,k-2), n >= 1, k >= 2.
G.f. for row n: (1 + x)/(1 - n*x + x^2), n >= 1.
A(n, k) = B(-n, k) where B = A299045. - Michael Somos, Jun 19 2023
EXAMPLE
Array begins:
1 2 1 -1 -2 -1 1 2 1 -1
1 3 5 7 9 11 13 15 17 19
1 4 11 29 76 199 521 1364 3571 9349
1 5 19 71 265 989 3691 13775 51409 191861
1 6 29 139 666 3191 15289 73254 350981 1681651
1 7 41 239 1393 8119 47321 275807 1607521 9369319
1 8 55 377 2584 17711 121393 832040 5702887 39088169
1 9 71 559 4401 34649 272791 2147679 16908641 133121449
1 10 89 791 7030 62479 555281 4935050 43860169 389806471
1 11 109 1079 10681 105731 1046629 10360559 102558961 1015229051
MATHEMATICA
(* Array: *)
Grid[Table[LinearRecurrence[{n, -1}, {1, 1 + n}, 10], {n, 10}]]
(* Array antidiagonals flattened (gives this sequence): *)
A294099[n_, k_] := Sum[(-1)^(Floor[j/2]) Binomial[k - Floor[(j + 1)/2], Floor[j/2]] n^(k - j), {j, 0, k}]; Flatten[Table[A294099[n - k, k], {n, 11}, {k, 0, n - 1}]]
PROG
(PARI) {A(n, k) = sum(j=0, k, (-1)^(j\2)*binomial(k-(j+1)\2, j\2)*n^(k-j))}; /* Michael Somos, Jun 19 2023 */
KEYWORD
sign,tabl
AUTHOR
STATUS
approved