login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A209485
T(n,k) is the number of n-bead necklaces labeled with numbers -k..k allowing reversal, with sum zero and avoiding the patterns z z+1 z+2 and z z-1 z-2.
12
1, 1, 2, 1, 3, 1, 1, 4, 4, 4, 1, 5, 7, 15, 4, 1, 6, 12, 35, 38, 11, 1, 7, 17, 72, 140, 136, 15, 1, 8, 24, 128, 390, 731, 458, 43, 1, 9, 31, 205, 866, 2606, 3740, 1781, 77, 1, 10, 40, 311, 1702, 7179, 17771, 20888, 6912, 199, 1, 11, 49, 448, 3014, 16660, 60778, 128598, 118137
OFFSET
1,3
COMMENTS
Table starts
..1....1.....1......1......1.......1.......1........1........1........1.......1
..2....3.....4......5......6.......7.......8........9.......10.......11......12
..1....4.....7.....12.....17......24......31.......40.......49.......60......71
..4...15....35.....72....128.....205.....311......448......618......829....1083
..4...38...140....390....866....1702....3014.....4984.....7774....11620...16716
.11..136...731...2606...7179...16660...34233....64220...112263...185506..292759
.15..458..3740..17771..60778..168453..401634...857433..1679810..3074315.5321674
.43.1781.20888.128598.541494.1778878.4907310.11891268.26069478.52776268
LINKS
FORMULA
Empirical for row n:
n=2: a(k) = 2*a(k-1) - a(k-2).
n=3: a(k) = 2*a(k-1) - 2*a(k-3) + a(k-4).
n=4: a(k) = 3*a(k-1) - 3*a(k-2) + 2*a(k-3) - 3*a(k-4) + 3*a(k-5) - a(k-6).
n=5: a(k) = 2*a(k-1) - a(k-3) - 2*a(k-5) + 2*a(k-6) + a(k-8) - 2*a(k-10) + a(k-11).
n=6: a(k) = 5*a(k-1) - 10*a(k-2) + 11*a(k-3) - 10*a(k-4) + 11*a(k-5) - 10*a(k-6) + 5*a(k-7) - a(k-8) for k > 9.
EXAMPLE
Some solutions for n=6, k=6:
.-5...-4...-5...-6...-6...-5...-6...-4...-3...-6...-6...-3...-5...-5...-6...-4
..0....0...-2...-3...-2...-4...-5...-3...-1....5....2...-2....0....2...-2....2
.-2...-2....2....4....0...-1....4....0...-1...-5....0...-2...-3...-4....6...-4
..2....2...-2....3....1....5....3....4....1....0...-4....5....2....1...-4....4
..5....0....5...-2....1....0....4....3...-2....0....6....0....5....0....0...-4
..0....4....2....4....6....5....0....0....6....6....2....2....1....6....6....6
CROSSREFS
Row 3 is A074148.
Row 4 is A209345.
Sequence in context: A112543 A099478 A133913 * A209344 A294099 A209115
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Mar 09 2012
STATUS
approved