login
A299072
Sequence is an irregular triangle read by rows with zeros removed where T(n,k) is the number of compositions of n whose standard factorization into Lyndon words has k distinct factors.
2
1, 2, 3, 1, 5, 3, 7, 9, 13, 17, 2, 19, 39, 6, 35, 72, 21, 59, 141, 55, 1, 107, 266, 132, 7, 187, 511, 300, 26, 351, 952, 660, 85, 631, 1827, 1395, 240, 3, 1181, 3459, 2901, 636, 15, 2191, 6595, 5977, 1554, 67, 4115, 12604, 12123, 3698, 228, 7711, 24173, 24504
OFFSET
1,2
COMMENTS
Row sums are 2^(n-1). First column is A008965. A regular version is A299070.
LINKS
EXAMPLE
Triangle begins:
1
2
3 1
5 3
7 9
13 17 2
19 39 6
35 72 21
59 141 55 1
107 266 132 7
187 511 300 26
MATHEMATICA
LyndonQ[q_]:=Array[OrderedQ[{q, RotateRight[q, #]}]&, Length[q]-1, 1, And]&&Array[RotateRight[q, #]&, Length[q], 1, UnsameQ];
qit[q_]:=If[#===Length[q], {q}, Prepend[qit[Drop[q, #]], Take[q, #]]]&[Max@@Select[Range[Length[q]], LyndonQ[Take[q, #]]&]];
DeleteCases[Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], Length[Union[qit[#]]]===k&]], {n, 11}, {k, n}], 0, {2}]
PROG
(PARI) \\ here b(n) is A059966.
b(n)={sumdiv(n, d, moebius(n/d) * (2^d-1))/n}
A(n)=[Vecrev(p/y) | p<-Vec(prod(k=1, n, (1 - y + y/(1-x^k) + O(x*x^n))^b(k))-1)]
my(T=A(15)); for(n=1, #T, print(T[n])) \\ Andrew Howroyd, Dec 08 2018
KEYWORD
nonn,tabf
AUTHOR
Gus Wiseman, Feb 01 2018
STATUS
approved