login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A334658
Triangular array read by rows. T(n,k) is the number of length n words on alphabet {0,1} with k maximal runs of 0's having length 2 or more, n>=0, 0<=k<=nearest integer to n/3.
0
1, 2, 3, 1, 5, 3, 8, 8, 13, 18, 1, 21, 38, 5, 34, 76, 18, 55, 147, 53, 1, 89, 277, 139, 7, 144, 512, 336, 32, 233, 932, 766, 116, 1, 377, 1676, 1670, 364, 9, 610, 2984, 3516, 1032, 50, 987, 5269, 7198, 2714, 215, 1, 1597, 9239, 14402, 6734, 785, 11
OFFSET
0,2
LINKS
Sergi Elizalde, Johnny Rivera Jr., and Yan Zhuang, Counting pattern-avoiding permutations by big descents, arXiv:2408.15111 [math.CO], 2024. See p. 6.
P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 304.
FORMULA
O.g.f.: ((u x^2)/(1 - x) + (1 - x^2)/(1 - x))/(1 - x ((u x^2)/(1 - x) + (1 - x^2)/(1 - x))).
Generally, the o.g.f. for such words having maximal runs of length at least r is: ((u x^r)/(1 - x) + (1 - x^r)/(1 - x))/(1 - x ((u x^r)/(1 - x) + (1 - x^r)/(1 - x))).
EXAMPLE
1,
2,
3, 1,
5, 3,
8, 8,
13, 18, 1,
21, 38, 5,
34, 76, 18,
55, 147, 53, 1
T(6,2) = 5 because we have: 000100, 001000, 001001, 001100, 100100.
MATHEMATICA
nn = 15; c[z_, u_] := ((1 - z^r)/(1 - z) + u z^r/(1 - z))*1/(1 - z ((1 - z^r)/(1 - z) + u z^r/(1 - z))) /. r -> 2; Map[Select[#, # > 0 &] &, CoefficientList[Series[c[z, u], {z, 0, nn}], {z, u}]] // Grid
CROSSREFS
Cf. A000045 (column k=0) A006478 (column k=1).
Row sums give A000079.
Sequence in context: A238344 A299072 A169820 * A352525 A114711 A246186
KEYWORD
nonn,tabf
AUTHOR
Geoffrey Critzer, Jul 25 2020
STATUS
approved