OFFSET
0,2
LINKS
Sergi Elizalde, Johnny Rivera Jr., and Yan Zhuang, Counting pattern-avoiding permutations by big descents, arXiv:2408.15111 [math.CO], 2024. See p. 6.
P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 304.
FORMULA
O.g.f.: ((u x^2)/(1 - x) + (1 - x^2)/(1 - x))/(1 - x ((u x^2)/(1 - x) + (1 - x^2)/(1 - x))).
Generally, the o.g.f. for such words having maximal runs of length at least r is: ((u x^r)/(1 - x) + (1 - x^r)/(1 - x))/(1 - x ((u x^r)/(1 - x) + (1 - x^r)/(1 - x))).
EXAMPLE
1,
2,
3, 1,
5, 3,
8, 8,
13, 18, 1,
21, 38, 5,
34, 76, 18,
55, 147, 53, 1
T(6,2) = 5 because we have: 000100, 001000, 001001, 001100, 100100.
MATHEMATICA
nn = 15; c[z_, u_] := ((1 - z^r)/(1 - z) + u z^r/(1 - z))*1/(1 - z ((1 - z^r)/(1 - z) + u z^r/(1 - z))) /. r -> 2; Map[Select[#, # > 0 &] &, CoefficientList[Series[c[z, u], {z, 0, nn}], {z, u}]] // Grid
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Geoffrey Critzer, Jul 25 2020
STATUS
approved