login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A334656 a(n) is the number of words of length n on the alphabet {0,1,2} with the number of 0's plus the number of 1's congruent to the number of 2's modulo 3. 1
1, 0, 4, 9, 24, 90, 225, 756, 2160, 6561, 19764, 58806, 177633, 530712, 1595052, 4782969, 14346720, 43053282, 129127041, 387440172, 1162241784, 3486784401, 10460412252, 31380882462, 94143533121, 282429005040, 847289140884, 2541865828329, 7625595890664 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
REFERENCES
Thomas A. Sudkamp, An Introduction to Languages and Machines. second edition 1997 Addison-Wesley.
LINKS
FORMULA
a(n) = 3^(n-1) + (1/3)*(-3/2 + sqrt(3)*i/2)^n + (1/3)*(-3/2 - sqrt(3)*i/2)^n.
a(n) = 6*a(n-2) + 9*a(n-3).
G.f.: (1 - 2*x^2)/((1 - 3*x)*(1 + 3*x + 3*x^2)). - Andrew Howroyd, Sep 11 2020
E.g.f.: (exp(3*x) + 2*exp(-3*x/2)*cos(sqrt(3)*x/2))/3. - Stefano Spezia, Sep 11 2020
EXAMPLE
The a(3)=9 words are (0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0), (1,1,1), (2,2,2).
MATHEMATICA
CoefficientList[Series[(1 - 2 x^2)/((1 - 3 x) (1 + 3 x + 3 x^2)), {x, 0, 28}], x] (* Michael De Vlieger, Sep 11 2020 *)
LinearRecurrence[{0, 6, 9}, {1, 0, 4}, 30] (* Harvey P. Dale, Aug 10 2023 *)
PROG
(PARI) Vec((1 - 2*x^2)/((1 - 3*x)*(1 + 3*x + 3*x^2)) + O(x^30)) \\ Andrew Howroyd, Sep 11 2020
CROSSREFS
Cf. A000244 (3^n).
Sequence in context: A059507 A128416 A353978 * A175121 A133905 A131826
KEYWORD
nonn,easy
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 10:56 EST 2023. Contains 367650 sequences. (Running on oeis4.)