The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A059507 Transform of A059502 applied to sequence 4,5,6,... 2
 4, 9, 24, 66, 182, 501, 1376, 3771, 10314, 28158, 76744, 208839, 567484, 1539981, 4173852, 11299386, 30556346, 82547961, 222790424, 600753663, 1618558734, 4357256694, 11721125644, 31507528971, 84637773172 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The fourth row of the array A059503. LINKS G. C. Greubel, Table of n, a(n) for n = 1..1000 Index entries for sequences related to boustrophedon transform Index entries for linear recurrences with constant coefficients, signature (6,-11,6,-1). FORMULA From Colin Barker, Nov 30 2012: (Start) a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) - a(n-4). G.f.: x*(1-x)*(3*x^2-11*x+4)/(x^2-3*x+1)^2. (End) a(n) = ((3 - n)*Fibonacci(2*n) + (15 + 3*n)*Fibonacci(2*n - 1))/5. - G. C. Greubel, Sep 10 2017 MATHEMATICA Rest[CoefficientList[Series[x*(1 - x)*(3*x^2 - 11*x + 4)/(x^2 - 3*x + 1)^2, {x, 0, 50}], x]] (* G. C. Greubel, Sep 10 2017 *) PROG (PARI) Vec(x*(1-x)*(3*x^2-11*x+4)/(x^2-3*x+1)^2 + O(x^40)) \\ Michel Marcus, Sep 09 2017 CROSSREFS Cf. A000667, A059216, A059219, A059502. Sequence in context: A112262 A077922 A081149 * A128416 A353978 A334656 Adjacent sequences: A059504 A059505 A059506 * A059508 A059509 A059510 KEYWORD easy,nonn AUTHOR Floor van Lamoen, Jan 19 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 08:09 EST 2023. Contains 367575 sequences. (Running on oeis4.)