OFFSET
0,3
COMMENTS
Substituting x(1-x)/(1-2x) into x/(1-x)^2 yields g.f. of sequence.
Variation of A059216 (and of Boustrophedon transform) applied to 1,2,3,4,...: fill an array by diagonals, each time in the same direction, say the 'up' direction. The first column is 1,2,3,4,... For the next element of a diagonal, add to the previous element the elements of the row the new element is in. The first row gives a(n).
LINKS
Harry J. Smith, Table of n, a(n) for n = 0..200
Sergi Elizalde, Rigoberto Flórez, and José Luis Ramírez, Enumerating symmetric peaks in non-decreasing Dyck paths, Ars Mathematica Contemporanea (2021).
Index entries for linear recurrences with constant coefficients, signature (6,-11,6,-1).
FORMULA
a(n) = 2*a(n-1) + Sum{m<=n-2} a(m) + A001519(n-2).
G.f.: x*(1 - x)*(1 - 2*x)/(1 - 3*x + x^2)^2. - Emeric Deutsch, Oct 07 2002
a(n) = A147703(n,1). - Philippe Deléham, Nov 29 2008
EXAMPLE
MATHEMATICA
Table[(3n Fibonacci[2n-1]+(3-n)Fibonacci[2n])/5, {n, 0, 30}] (* or *) CoefficientList[Series[x(1-x)(1-2x)/(1-3x+x^2)^2, {x, 0, 30}], x] (* Harvey P. Dale, Apr 23 2011 *)
PROG
(PARI) a(n)=(3*n*fibonacci(2*n-1)+(3-n)*fibonacci(2*n))/5
(Magma) [(3*n*Fibonacci(2*n-1)+(3-n)*Fibonacci(2*n))/5: n in [0..100]]; // Vincenzo Librandi, Apr 23 2011
CROSSREFS
KEYWORD
easy,nonn,nice
AUTHOR
Floor van Lamoen, Jan 19 2001
STATUS
approved