login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059219
Variation of Boustrophedon transform applied to sequence 1,0,0,0,...: fill an array by diagonals in alternating directions - 'up' and 'down'. The first element of each diagonal after the first is 0. When 'going up', add to the previous element the elements of the row the new element is in. When 'going down', add to the previous element the elements of the column the new element is in. The final element of the n-th diagonal is a(n).
20
1, 1, 2, 5, 15, 55, 239, 1199, 6810, 43108, 300731, 2291162, 18923688, 168402163, 1606199354, 16345042652, 176758631046, 2024225038882, 24471719797265, 311446235344127, 4162172487402027, 58275220793611957, 853045299274146032
OFFSET
0,3
EXAMPLE
The array begins
1 1 0 5 0 55 0 ...
0 1 3 5 48 55 ...
2 2 8 39 103 ...
0 12 27 152 ...
15 15 190 ...
0 221 ...
MAPLE
aaa := proc(m, n) option remember; local j, s, t1; if m=0 and n=0 then RETURN(1); fi; if n = 0 and m mod 2 = 1 then RETURN(0); fi; if m = 0 and n mod 2 = 0 then RETURN(0); fi; s := m+n; if s mod 2 = 1 then t1 := aaa(m+1, n-1); for j from 0 to n-1 do t1 := t1+aaa(m, j); od: else t1 := aaa(m-1, n+1); for j from 0 to m-1 do t1 := t1+aaa(j, n); od: fi; RETURN(t1); end; # the n-th antidiagonal in the up direction is aaa(n, 0), aaa(n-1, 1), aaa(n-2, 2), ..., aaa(0, n)
MATHEMATICA
max = 22; t[0, 0] = 1; t[0, _?EvenQ] = 0; t[_?OddQ, 0] = 0; t[n_, k_] /; OddQ[n+k](* up *):= t[n, k] = t[n+1, k-1] + Sum[t[n, j], {j, 0, k-1}]; t[n_, k_] /; EvenQ[n+k](* down *):= t[n, k] = t[n-1, k+1] + Sum[t[j, k], {j, 0, n-1}]; tnk = Table[t[n, k], {n, 0, max}, {k, 0, max-n}]; Join[{1}, Rest[Union[tnk[[1]], tnk[[All, 1]]]]](* Jean-François Alcover, May 16 2012 *)
KEYWORD
easy,nonn,nice
AUTHOR
N. J. A. Sloane, Jan 18 2001
EXTENSIONS
More terms from Floor van Lamoen, Jan 19 2001; and from N. J. A. Sloane Jan 20 2001.
STATUS
approved