login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A027994
a(n) = (F(2n+3) - F(n))/2 where F() = Fibonacci numbers A000045.
7
1, 2, 6, 16, 43, 114, 301, 792, 2080, 5456, 14301, 37468, 98137, 256998, 672946, 1761984, 4613239, 12078110, 31621701, 82787980, 216743836, 567446112, 1485598681, 3889356696, 10182482353, 26658108074, 69791870526, 182717549872, 478360854115, 1252365133866, 3278734743901, 8583839415648, 22472784017272
OFFSET
0,2
COMMENTS
Substituting x*(1-x)/(1-2x) into x^2/(1-x^2) yields x^2*(g.f. of sequence).
The number of (s(0), s(1), ..., s(n+1)) such that 0 < s(i) < 5 and |s(i) - s(i-1)| <= 1 for i = 1,2,...,n+1, s(0) = 2, s(n+1) = 3. - Herbert Kociemba, Jun 02 2004
Diagonal sums of triangle in A125171. - Philippe Deléham, Jan 14 2014
FORMULA
G.f.: (1-x)^2/((1-x-x^2)*(1-3*x+x^2)). - Floor van Lamoen and N. J. A. Sloane, Jan 21 2001
a(n) = Sum_{k=0..n} T(n, k)*T(n, n+k), T given by A027926.
a(n) = 2*a(n-1) + Sum_{m < n-1} a(m) + F(n-1) = A059512(n+2) - F(n) where F(n) is the n-th Fibonacci number (A000045). - Floor van Lamoen, Jan 21 2001
a(n) = (2/5)*Sum_{k=1..4} sin(2*Pi*k/5)*sin(3*Pi*k/5)*(1+2*cos(Pi*k/5))^(n+1). - Herbert Kociemba, Jun 02 2004
a(-1-2n) = A056014(2n), a(-2n) = A005207(2n-1).
E.g.f.: exp(3*x/2)*cosh(sqrt(5)*x/2) + exp(x/2)*(2*exp(x) - 1)*sinh(sqrt(5)*x/2)/sqrt(5). - Stefano Spezia, Jan 01 2025
MATHEMATICA
Table[(Fibonacci[2n+3]-Fibonacci[n])/2, {n, 0, 30}] (* or *) LinearRecurrence[{4, -3, -2, 1}, {1, 2, 6, 16}, 30] (* Harvey P. Dale, Apr 28 2022 *)
PROG
(PARI) a(n)=(fibonacci(2*n+3)-fibonacci(n))/2
(Magma) [(Fibonacci(2*n+3)-Fibonacci(n))/2 : n in [0..40]]; // Vincenzo Librandi, Jan 01 2025
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved