|
|
A287898
|
|
Number of ways to go up and down n stairs, with fewer than 4 stairs at a time, stepping on each stair at least once.
|
|
1
|
|
|
1, 3, 9, 27, 79, 233, 687, 2025, 5969, 17595, 51865, 152883, 450655, 1328401, 3915743, 11542481, 34023905, 100292659, 295633833, 871443275, 2568763439, 7571973753, 22319994767, 65792907193, 193938514865, 571674807403, 1685132453689, 4967284459107
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Also the number of words using 0, 1 and 2 which have n-1 length and don't appear 0000 or 1111.
|
|
LINKS
|
|
|
FORMULA
|
a(n+4) = 2*a(n+3) + 2*a(n+2) + 2*a(n+1) + a(n).
G.f.: x*(1 + x)*(1 + x^2) / (1 - 2*x - 2*x^2 - 2*x^3 - x^4). - Colin Barker, Jun 02 2017
|
|
EXAMPLE
|
n = 2
0->1->2->0 (0), 0->2->1->0 (1), 0->1->2->1->0 (2). So a(2) = 3.
n = 3
0->1->2->3->0 (00), 0->1->3->2->0 (01), 0->1->2->3->2->0 (02),
0->2->3->1->0 (10), 0->3->2->1->0 (11), 0->2->3->2->1->0 (12),
0->1->2->3->1->0 (20), 0->1->3->2->1->0 (21), 0->1->2->3->2->1->0 (22). So a(3) = 9.
...
n = 5
0->1->2->3->5->4->0 (0001), ... , 0->4->5->3->2->1->0 (1110),
0->4->5->4->3->2->1->0 (1112), ... , 0->1->2->3->4->5->4->3->2->1->0 (2222).
So a(5) = 81 - 2 = 79.
|
|
MATHEMATICA
|
CoefficientList[Series[(1 + x)*(1 + x^2)/(1 - 2*x - 2*x^2 - 2*x^3 - x^4), {x, 0, 30}], x] (* Wesley Ivan Hurt, Jun 02 2017 *)
|
|
PROG
|
(Ruby)
def f(ary, n)
return false if ary.size < n
a = ary[-1]
ary[-n..-2].all?{|i| i == a}
end
def A(k, n)
f_ary = [[]]
ary = [1]
(n - 1).times{
b_ary = []
f_ary.each{|i|
i0, i1, i2 = i + [0], i + [1], i + [2]
b_ary << i0 if !f(i0, k)
b_ary << i1 if !f(i1, k)
b_ary << i2
}
f_ary = b_ary
ary << f_ary.size
}
ary
end
p A(4, 10)
(PARI) Vec(x*(1 + x)*(1 + x^2) / (1 - 2*x - 2*x^2 - 2*x^3 - x^4) + O(x^30)) \\ Colin Barker, Jun 02 2017
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|