login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A287899
Number of permutations of [2n] with exactly n cycles such that the elements of each cycle form an integer interval.
6
1, 1, 5, 31, 217, 1661, 13721, 121703, 1157857, 11826121, 129877645, 1535504015, 19546846441, 267633414517, 3932330905361, 61806788736551, 1035452546213441, 18421374554192017, 346790652640704725, 6885640002624595007, 143771244649798115257
OFFSET
0,3
COMMENTS
All terms are odd.
LINKS
Wikipedia, Permutation
FORMULA
a(n) = A084938(2n,n).
a(n) = [x^n] (1/(1 - x/(1 - x/(1 - 2*x/(1 - 2*x/(1 - 3*x/(1 - 3*x/(1 - ...))))))))^n, a continued fraction. - Ilya Gutkovskiy, Sep 29 2017
a(n) ~ exp(1) * n * n!. - Vaclav Kotesovec, Sep 29 2017
EXAMPLE
a(2) = 5: (1)(2,3,4), (1)(2,4,3), (1,2)(3,4), (1,2,3)(4), (1,3,2)(4).
MAPLE
b:= proc(n, i) option remember; `if`(n=0 or i=1, n!,
add(b(n-j, i-1)*j!, j=0..n))
end:
a:= n-> b(n$2):
seq(a(n), n=0..25);
MATHEMATICA
Table[SeriesCoefficient[1/(1 + ContinuedFractionK[-Floor[(k + 1)/2]*x, 1, {k, 1, n}])^n, {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Sep 29 2017 *)
Table[SeriesCoefficient[Sum[k!*x^k, {k, 0, n}]^n, {x, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Aug 10 2019 *)
CROSSREFS
Cf. A084938, A088218 (analog for set partitions).
Sequence in context: A269730 A036758 A153232 * A110379 A097146 A143020
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jun 02 2017
STATUS
approved