login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097146
Total sum of maximum list sizes in all sets of lists of n-set, cf. A000262.
3
0, 1, 5, 31, 217, 1781, 16501, 172915, 1998641, 25468777, 352751941, 5292123431, 85297925065, 1472161501981, 27039872306357, 527253067633531, 10865963240550241, 236088078855319505, 5390956470528548101, 129102989125943058607, 3234053809095307670201, 84596120521251178630981, 2305894874979300173268085
OFFSET
0,3
LINKS
FORMULA
E.g.f.: exp(x/(1-x))*Sum_{k>0} (1-exp(x^k/(x-1))).
EXAMPLE
For n=4 we have 73 sets of lists (cf. A000262): (1234) (24 ways), (123)(4) (6*4 ways), (12)(34) (3*4 ways), (12)(3)(4) (6*2 ways), (1)(2)(3)(4) (1 way); so a(4)= 24*4+24*3+12*2+12*2+1*1 = 217.
MAPLE
b:= proc(n, m) option remember; `if`(n=0, m, add(j!*
b(n-j, max(m, j))*binomial(n-1, j-1), j=1..n))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..25); # Alois P. Heinz, May 10 2016
MATHEMATICA
b[n_, m_] := b[n, m] = If[n == 0, m, Sum[j! b[n-j, Max[m, j]] Binomial[n-1, j-1], {j, 1, n}]];
a[n_] := b[n, 0];
a /@ Range[0, 25] (* Jean-François Alcover, Nov 05 2020, after Alois P. Heinz *)
PROG
(PARI)
N=50; x='x+O('x^N);
egf=exp(x/(1-x))*sum(k=1, N, (1-exp(x^k/(x-1))) );
Vec( serlaplace(egf) ) /* show terms */
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Jul 27 2004
EXTENSIONS
a(0)=0 prepended by Alois P. Heinz, May 10 2016
STATUS
approved