|
|
|
|
1, 3, 9, 27, 80, 232, 656, 1808, 4864, 12800, 33024, 83712, 208896, 514048, 1249280, 3002368, 7143424, 16842752, 39387136, 91422720, 210763776, 482869248, 1099956224, 2492465152, 5620367360, 12616466432, 28202500096, 62797119488, 139318001664, 308029685760
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
a(n) is the number of ternary strings of length n that contain at most three 0's.- Enrique Navarrete, Mar 13 2024
|
|
LINKS
|
|
|
FORMULA
|
O.g.f.: (1-x)*(1-4*x+5*x^2) / (1-2*x)^4. - R. J. Mathar, Jun 08 2008
a(n) = 8*a(n-1) - 24*a(n-2) + 32*a(n-3) - 16*a(n-4) for n>3.
a(n) = (2^(n-4)*(48 + 20*n + 3*n^2 + n^3)) / 3. (End)
|
|
EXAMPLE
|
a(3) = 27 = (1, 3, 3, 1) dot (1, 2, 4, 8) = (1 + 6 + 12 + 8), where A000125 = (1, 2, 4, 8, 15, 26, 42, ...).
a(3) = 27 = sum of row 3 terms of triangle A134395: (8 + 12 + 6 + 1).
|
|
MATHEMATICA
|
CoefficientList[Series[(1-x)(1-4x+5x^2)/(1-2x)^4, {x, 0, 30}], x] (* or *) LinearRecurrence[ {8, -24, 32, -16}, {1, 3, 9, 27}, 30] (* Harvey P. Dale, Mar 09 2023 *)
|
|
PROG
|
(PARI) Vec((1-x)*(1-4*x+5*x^2) / (1-2*x)^4 + O(x^30)) \\ Colin Barker, Feb 13 2017
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|