OFFSET
1,3
COMMENTS
A Motzkin path of length n is a lattice path from (0,0) to (n,0) consisting of U=(1,1), D=(1,-1) and H=(1,0) steps and never going below the x-axis. A weak ascent in a Motzkin path is a maximal sequence of consecutive U and H steps.
LINKS
Jean-Luc Baril and José Luis Ramírez, Descent distribution on Catalan words avoiding ordered pairs of Relations, arXiv:2302.12741 [math.CO], 2023.
I. L. Hofacker, P. Schuster and P. F. Stadler, Combinatorics of RNA secondary structures, Discrete Appl. Math., 88, 1998, 207-237.
P. R. Stein and M. S. Waterman, On some new sequences generalizing the Catalan and Motzkin numbers, Discrete Math., 26 (1978), 261-272.
M. Vauchassade de Chaumont and G. Viennot, Polynômes orthogonaux et problèmes d'énumération en biologie moléculaire, Publ. I.R.M.A. Strasbourg, 1984, 229/S-08, Actes 8e Sem. Lotharingien, pp. 79-86.
FORMULA
Row n contains ceiling(n/3) terms.
Row sums yield the RNA secondary structure numbers (A004148).
Column 1 yields the Fibonacci numbers (A000045).
Column 2 yields A001628.
T(3n+1,n+1) = A000108(n) (the Catalan numbers).
Sum_{k=1..ceiling(n/3)} k*T(n,k) = A051286(n-1) (n >= 1).
G.f.: G = G(t, z) satisfies G = z*(t+G) + z^2*G*(1+G).
EXAMPLE
T(5,2)=3 because we have (UH)D(UU), (UHH)D(H) and (HUH)D(H) (the weak ascents are shown between parentheses).
Triangle begins:
1;
1;
2;
3, 1;
5, 3;
8, 9;
13, 22, 2;
MAPLE
G:=(1-z-z^2-sqrt(1-2*z-z^2+2*z^3+z^4-4*t*z^3))/2/z^2: Gser:=simplify(series(G, z=0, 22)): for n from 1 to 18 do P[n]:=coeff(Gser, z^n) od: for n from 0 to 18 do seq(coeff(P[n], t^j), j=1..ceil(n/3)) od; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Dec 27 2005
STATUS
approved