login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A114711
Triangle read by rows: T(n,k) = number of peakless Motzkin paths of length n and having k weak ascents (1 <= k <= ceiling(n/3)).
0
1, 1, 2, 3, 1, 5, 3, 8, 9, 13, 22, 2, 21, 51, 10, 34, 111, 40, 55, 233, 130, 5, 89, 474, 380, 35, 144, 942, 1022, 175, 233, 1836, 2590, 700, 14, 377, 3522, 6260, 2450, 126, 610, 6666, 14570, 7770, 756, 987, 12473, 32870, 22890, 3570, 42, 1597, 23109, 72244
OFFSET
1,3
COMMENTS
A Motzkin path of length n is a lattice path from (0,0) to (n,0) consisting of U=(1,1), D=(1,-1) and H=(1,0) steps and never going below the x-axis. A weak ascent in a Motzkin path is a maximal sequence of consecutive U and H steps.
LINKS
Jean-Luc Baril and José Luis Ramírez, Descent distribution on Catalan words avoiding ordered pairs of Relations, arXiv:2302.12741 [math.CO], 2023.
I. L. Hofacker, P. Schuster and P. F. Stadler, Combinatorics of RNA secondary structures, Discrete Appl. Math., 88, 1998, 207-237.
P. R. Stein and M. S. Waterman, On some new sequences generalizing the Catalan and Motzkin numbers, Discrete Math., 26 (1978), 261-272.
M. Vauchassade de Chaumont and G. Viennot, Polynômes orthogonaux et problèmes d'énumération en biologie moléculaire, Publ. I.R.M.A. Strasbourg, 1984, 229/S-08, Actes 8e Sem. Lotharingien, pp. 79-86.
FORMULA
Row n contains ceiling(n/3) terms.
Row sums yield the RNA secondary structure numbers (A004148).
Column 1 yields the Fibonacci numbers (A000045).
Column 2 yields A001628.
T(3n+1,n+1) = A000108(n) (the Catalan numbers).
Sum_{k=1..ceiling(n/3)} k*T(n,k) = A051286(n-1) (n >= 1).
G.f.: G = G(t, z) satisfies G = z*(t+G) + z^2*G*(1+G).
EXAMPLE
T(5,2)=3 because we have (UH)D(UU), (UHH)D(H) and (HUH)D(H) (the weak ascents are shown between parentheses).
Triangle begins:
1;
1;
2;
3, 1;
5, 3;
8, 9;
13, 22, 2;
MAPLE
G:=(1-z-z^2-sqrt(1-2*z-z^2+2*z^3+z^4-4*t*z^3))/2/z^2: Gser:=simplify(series(G, z=0, 22)): for n from 1 to 18 do P[n]:=coeff(Gser, z^n) od: for n from 0 to 18 do seq(coeff(P[n], t^j), j=1..ceil(n/3)) od; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Dec 27 2005
STATUS
approved