login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A114708
a(n) = A114707(n) - A114707(n-1) = the number of distinct primes dividing n but not A114707(n-1).
2
1, 1, 1, 1, 2, 0, 1, 1, 2, 0, 2, 0, 2, 0, 1, 1, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 3, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 3, 1, 2, 2, 2, 1, 1, 1, 0, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 0, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 2, 3, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 0, 1, 3, 1, 2, 3, 1
OFFSET
2,5
COMMENTS
First occurrence of k=0..8: 7, 2, 6, 30, 330, 4620, 46410, 570570, ..., . - Robert G. Wilson v, Dec 28 2005
EXAMPLE
A114707(11) = 11. Since 2 and 3 are the 2 distinct primes that divide 12 and neither divides 11, a(12) is 2 (and A114707(12) is 2 + A114707(11) = 13).
MATHEMATICA
a[1] = 1; a[n_] := a[n] = a[n - 1] + Length@Complement[First /@ FactorInteger@n, First /@ FactorInteger@a[n - 1]]; b = Array[a, 100]; Drop[b, 1] - Drop[b, -1] (* Robert G. Wilson v, Dec 28 2005 *)
PROG
(PARI) {a=1; for(n=2, 106, print1(d=#setminus(Set(factor(n)[, 1]), Set(factor(a)[, 1])), ", "); a=a+d)} \\ Klaus Brockhaus, Dec 27 2005
CROSSREFS
Cf. A114707.
Sequence in context: A178146 A305435 A350658 * A084927 A333750 A072670
KEYWORD
nonn
AUTHOR
Leroy Quet, Dec 26 2005
EXTENSIONS
More terms from Klaus Brockhaus and Robert G. Wilson v, Dec 27 2005
STATUS
approved