Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Jan 10 2019 03:11:50
%S 1,1,1,1,2,0,1,1,2,0,2,0,2,0,1,1,2,0,2,0,2,0,2,0,2,0,2,0,3,1,1,2,1,2,
%T 1,1,2,2,1,1,3,1,2,2,2,1,1,1,0,1,2,1,1,1,1,2,2,1,1,1,1,1,0,2,1,1,1,1,
%U 2,1,2,1,1,2,2,2,3,1,2,1,1,1,2,2,1,2,2,1,1,2,2,2,2,2,2,1,1,1,0,1,3,1,2,3,1
%N a(n) = A114707(n) - A114707(n-1) = the number of distinct primes dividing n but not A114707(n-1).
%C First occurrence of k=0..8: 7, 2, 6, 30, 330, 4620, 46410, 570570, ..., . - _Robert G. Wilson v_, Dec 28 2005
%e A114707(11) = 11. Since 2 and 3 are the 2 distinct primes that divide 12 and neither divides 11, a(12) is 2 (and A114707(12) is 2 + A114707(11) = 13).
%t a[1] = 1; a[n_] := a[n] = a[n - 1] + Length@Complement[First /@ FactorInteger@n, First /@ FactorInteger@a[n - 1]]; b = Array[a, 100]; Drop[b, 1] - Drop[b, -1] (* _Robert G. Wilson v_, Dec 28 2005 *)
%o (PARI) {a=1;for(n=2,106,print1(d=#setminus(Set(factor(n)[,1]),Set(factor(a)[,1])),",");a=a+d)} \\ _Klaus Brockhaus_, Dec 27 2005
%Y Cf. A114707.
%K nonn
%O 2,5
%A _Leroy Quet_, Dec 26 2005
%E More terms from _Klaus Brockhaus_ and _Robert G. Wilson v_, Dec 27 2005