OFFSET
1,3
COMMENTS
FORMULA
G.f.=G-1, where G=G(t, z) satisfies z(1+t-z+tz)G^2-(1+tz)G+1=0.
EXAMPLE
T(3,2)=2 because we have (U)H(U)DD and (UU)D(U)DD, where U=(1,1), D=(1,-1),
H=(2,0) (the ascents are shown between parentheses).
Triangle starts:
1;
1,2;
1,8,2;
1,22,20,2;
MAPLE
G:=(1+t*z-sqrt(1-2*t*z+t^2*z^2-4*z-4*z^2*t+4*z^2))/2/(z+t*z+z^2*t-z^2)-1: Gser:=simplify(series(G, z=0, 15)): for n from 1 to 11 do P[n]:=coeff(Gser, z^n) od: for n from 1 to 11 do seq(coeff(t*P[n], t^j), j=1..n) od; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Dec 26 2005
STATUS
approved