login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A317932
Denominators of certain "Dirichlet Square Root" sequences: a(n) = A046644(n)/(2^A007949(n)).
14
1, 2, 1, 8, 2, 2, 2, 16, 2, 4, 2, 8, 2, 4, 2, 128, 2, 4, 2, 16, 2, 4, 2, 16, 8, 4, 2, 16, 2, 4, 2, 256, 2, 4, 4, 16, 2, 4, 2, 32, 2, 4, 2, 16, 4, 4, 2, 128, 8, 16, 2, 16, 2, 4, 4, 32, 2, 4, 2, 16, 2, 4, 4, 1024, 4, 4, 2, 16, 2, 8, 2, 32, 2, 4, 8, 16, 4, 4, 2, 256, 8, 4, 2, 16, 4, 4, 2, 32, 2, 8, 4, 16, 2, 4, 4, 256, 2, 16, 4, 64, 2, 4, 2, 32, 4
OFFSET
1,2
COMMENTS
These are denominators for rational valued sequences that are obtained as "Dirichlet Square Roots" of sequences b that satisfy the condition b(3) = 2, and b(p) = odd number for any other primes p. For example, A064989, A065769 and A234840. - Antti Karttunen, Aug 31 2018
The original definition was: Denominators of the rational valued sequence whose Dirichlet convolution with itself yields A002487, Stern's Diatomic sequence. However, this definition depends on the conjecture given in A261179.
FORMULA
a(n) = A046644(n)/A318666(n) = 2^A305439(n).
a(n) = denominator of f(n), where f(1) = 1, f(n) = (1/2) * (b(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1, where b can be A064989, A065769 or A234840 for example, conjecturally also A002487.
Multiplicative with a(3^e) = 2^A011371(e), a(p^e) = 2^A005187(e) for any other primes. - Antti Karttunen, Sep 03 2018
PROG
(PARI)
\\ Original program, based on conjectural formula:
A002487(n) = { my(a=1, b=0); while(n>0, if(bitand(n, 1), b+=a, a+=b); n>>=1); (b); }; \\ From A002487
A317931perA317932(n) = if(1==n, n, (A002487(n)-sumdiv(n, d, if((d>1)&&(d<n), A317931perA317932(d)*A317931perA317932(n/d), 0)))/2);
A317932(n) = denominator(A317931perA317932(n));
(PARI)
\\ New fast program implementing the new definition:
A005187(n) = { my(s=n); while(n>>=1, s+=n); s; };
A046644(n) = factorback(apply(e -> 2^A005187(e), factor(n)[, 2]));
A317932(n) = (A046644(n)/2^valuation(n, 3)); \\ Antti Karttunen, Aug 31 2018
(PARI)
A011371(n) = (A005187(n)-n);
A317932(n) = { my(f = factor(n), m=1); for(i=1, #f~, if(3 == f[i, 1], m *= 2^(A011371(f[i, 2])), m *= 2^A005187(f[i, 2]))); (m); }; \\ Antti Karttunen, Sep 03 2018
CROSSREFS
Cf. A317930, A318319, A318669 (some of the numerator sequences), A317931 (conjectured, for A002487).
Cf. A305439 (the 2-adic valuation), A318666.
Sequence in context: A367024 A114706 A046740 * A253583 A130562 A363894
KEYWORD
nonn,frac,mult
AUTHOR
Antti Karttunen, Aug 11 2018
EXTENSIONS
Definition changed, the original (now conjectured alternative definition) moved to the comments section by Antti Karttunen, Aug 31 2018
Keyword:mult added by Antti Karttunen, Sep 03 2018
STATUS
approved