The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A318666 a(n) = 2^{the 3-adic valuation of n}. 2
 1, 1, 2, 1, 1, 2, 1, 1, 4, 1, 1, 2, 1, 1, 2, 1, 1, 4, 1, 1, 2, 1, 1, 2, 1, 1, 8, 1, 1, 2, 1, 1, 2, 1, 1, 4, 1, 1, 2, 1, 1, 2, 1, 1, 4, 1, 1, 2, 1, 1, 2, 1, 1, 8, 1, 1, 2, 1, 1, 2, 1, 1, 4, 1, 1, 2, 1, 1, 2, 1, 1, 4, 1, 1, 2, 1, 1, 2, 1, 1, 16, 1, 1, 2, 1, 1, 2, 1, 1, 4, 1, 1, 2, 1, 1, 2, 1, 1, 4, 1, 1, 2, 1, 1, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS Antti Karttunen, Table of n, a(n) for n = 1..65537 FORMULA a(n) = 2^A007949(n). a(n) = A046644(n)/A317932(n). Multiplicative with a(3^e) = 2^e, a(p^e) = 1 for any other primes. Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2. - Amiram Eldar, Nov 17 2022 Dirichlet g.f.: zeta(s)*(3^s-1)/(3^s-2). - Amiram Eldar, Jan 03 2023 More precise asymptotics: Sum_{k=1..n} a(k) ~ 2*n + zeta(log(2)/log(3)) * n^(log(2)/log(3)) / (2*log(2)). - Vaclav Kotesovec, Jun 25 2024 MATHEMATICA Table[2^IntegerExponent[n, 3], {n, 100}] (* Vincenzo Librandi, Mar 19 2020 *) PROG (PARI) A318666(n) = 2^valuation(n, 3); (PARI) A318666(n) = { my(f = factor(n), m=1); for(i=1, #f~, if(3 == f[i, 1], m *= 2^f[i, 2])); (m); }; (Magma) [2^Valuation(n, 3): n in [1..100]]; // Vincenzo Librandi, Mar 19 2020 CROSSREFS Cf. A000079, A007949, A046644, A317932. Sequence in context: A328818 A361498 A366852 * A301391 A068696 A343388 Adjacent sequences: A318663 A318664 A318665 * A318667 A318668 A318669 KEYWORD nonn,mult AUTHOR Antti Karttunen, Sep 03 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 21 22:43 EDT 2024. Contains 374478 sequences. (Running on oeis4.)