login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318664
Numerators of the sequence whose Dirichlet convolution with itself yields A064664, the inverse permutation of EKG-sequence.
3
1, 1, 5, 1, 5, -1, 7, 3, -1, -1, 10, 3, 14, -1, -7, 5, 33, 59, 37, 9, -10, -1, 43, -1, -1, -1, 181, 13, 57, 89, 61, 15, -29, -1, -45, 31, 67, -1, -41, 1, 37, 129, 81, 11, 301, -1, 89, 21, 1, 26, -97, 10, 50, -93, -47, -5, -109, -1, 107, -33, 115, -1, 411, 15, -43, 201, 64, 33, -127, 56, 67, 181, 69, -1, 283, 35, -31, 255, 151, 7
OFFSET
1,3
FORMULA
a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A064664(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1.
For n >= 2, a(2*A000040(n)) = -1.
PROG
(PARI)
v064413 = readvec("b064413_upto65539_terms_only.txt"); \\ From b-file of A064413 prepared beforehand.
A064413(n) = v064413[n];
m064664 = Map();
for(n=1, 65539, mapput(m064664, A064413(n), n));
A064664(n) = mapget(m064664, n);
up_to = (2^14);
DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d<n, u[d]*u[n/d], 0)))/2); u}; \\ From A317937.
v318664_65 = DirSqrt(vector(up_to, n, A064664(n)));
A318664(n) = numerator(v318664_65[n]);
A318665(n) = denominator(v318664_65[n]);
CROSSREFS
Cf. A064664, A304526, A304527, A305293, A305294, A318665 (denominators).
Cf. also A317929, A317930.
Sequence in context: A100947 A096940 A141345 * A329031 A264483 A050340
KEYWORD
sign,frac
AUTHOR
Antti Karttunen, Sep 01 2018
STATUS
approved