login
A318662
Denominators of the sequence whose Dirichlet convolution with itself yields A055653, sum of phi(d) over all unitary divisors d of n.
5
1, 1, 2, 1, 2, 2, 2, 2, 8, 2, 2, 2, 2, 2, 4, 2, 2, 8, 2, 2, 4, 2, 2, 4, 8, 2, 16, 2, 2, 4, 2, 2, 4, 2, 4, 8, 2, 2, 4, 4, 2, 4, 2, 2, 16, 2, 2, 4, 8, 8, 4, 2, 2, 16, 4, 4, 4, 2, 2, 4, 2, 2, 16, 8, 4, 4, 2, 2, 4, 4, 2, 16, 2, 2, 16, 2, 4, 4, 2, 4, 128, 2, 2, 4, 4, 2, 4, 4, 2, 16, 4, 2, 4, 2, 4, 4, 2, 8, 16, 8, 2, 4, 2, 4, 8
OFFSET
1,3
COMMENTS
The sequence seems to give the denominators of several other similarly constructed "Dirichlet Square Roots".
LINKS
FORMULA
a(n) = denominator of f(n), where f(1) = 1, f(n) = (1/2) * (A055653(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1.
PROG
(PARI)
up_to = 1+(2^16);
A055653(n) = sumdiv(n, d, if(gcd(n/d, d)==1, eulerphi(d))); \\ From A055653
DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d<n, u[d]*u[n/d], 0)))/2); u};
v318661_62 = DirSqrt(vector(up_to, n, A055653(n)));
A318661(n) = numerator(v318661_62[n]);
A318662(n) = denominator(v318661_62[n]);
A318663(n) = valuation(A318662(n), 2);
CROSSREFS
Cf. A055653, A318661 (numerators), A318663.
Sequence in context: A029252 A094876 A144159 * A073610 A285797 A362746
KEYWORD
nonn
AUTHOR
Antti Karttunen, Sep 03 2018
STATUS
approved