login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A334661
Numbers k such that k*sod(k) and k+sod(k) are both palindromes, where sod(k) denotes the sum of digits of k (A007953).
1
0, 1, 2, 3, 124, 829, 186373637, 186454637, 187272737, 195454547, 23212121199, 23302120299, 1230303030288, 1312121212098, 1320303030198, 1321121211198, 1321203021198, 1321211121198, 1330121210298, 1330203020298, 1330211120298, 1330301030298, 2130303030279
OFFSET
1,3
COMMENTS
For the first 2729 terms, most of them have digit sum 33. The only terms a(n) for n <= 2729 for which the digit sum is not 33 are for n = 1,...,10, 716, 2194, 2195. - Chai Wah Wu, May 15 2020
EXAMPLE
The sum of digits of 829 is 19 and 829*19 = 15751 and 829+19 = 848 are palindromes, so 829 is a term.
MATHEMATICA
Select[Range[0, 999], (s = Plus @@ IntegerDigits[#]; PalindromeQ[# s] && PalindromeQ[# + s]) &]
PROG
(PARI) ispal(n) = my(d=digits(n)); d == Vecrev(d);
isok(m) = my(s=sumdigits(m)); ispal(m*s) && ispal(m+s); \\ Michel Marcus, May 08 2020
CROSSREFS
Intersection of A229549 and A229545.
Sequence in context: A065841 A051177 A371271 * A258968 A125674 A180533
KEYWORD
nonn,base
AUTHOR
Giovanni Resta, May 07 2020
STATUS
approved