login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A334664
a(n) = Product_{d|n} gcd(d, tau(d)).
2
1, 2, 1, 2, 1, 4, 1, 8, 3, 4, 1, 24, 1, 4, 1, 8, 1, 72, 1, 8, 1, 4, 1, 768, 1, 4, 3, 8, 1, 16, 1, 16, 1, 4, 1, 3888, 1, 4, 1, 256, 1, 16, 1, 8, 9, 4, 1, 1536, 1, 8, 1, 8, 1, 144, 1, 256, 1, 4, 1, 2304, 1, 4, 9, 16, 1, 16, 1, 8, 1, 16, 1, 1492992, 1, 4, 3, 8, 1
OFFSET
1,2
LINKS
FORMULA
a(p) = 1 for p = odd primes (A065091).
EXAMPLE
a(6) = gcd(1, tau(1)) * gcd(2, tau(2)) * gcd(3, tau(3)) * gcd(6, tau(6)) = gcd(1, 1) * gcd(2, 2) * gcd(3, 2) * gcd(6, 4) = 1 * 2 * 1 * 2 = 4.
MATHEMATICA
Table[Times@@GCD[Divisors[n], DivisorSigma[0, Divisors[n]]], {n, 80}] (* Harvey P. Dale, Mar 30 2024 *)
PROG
(Magma) [&*[GCD(d, #Divisors(d)): d in Divisors(n)]: n in [1..100]]
(PARI) a(n) = my(d=divisors(n)); prod(k=1, #d, gcd(d[k], numdiv(d[k]))); \\ Michel Marcus, May 08-11 2020
CROSSREFS
Cf. A322979 (Sum_{d|n} gcd(d, tau(d))), A334491 (Product_{d|n} gcd(d, sigma(d))).
Cf. A000005 (tau(n)), A000203 (sigma(n)), A009191 (gcd(n, tau(n))).
Sequence in context: A055684 A300584 A024559 * A061797 A068341 A360738
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, May 07 2020
STATUS
approved