login
A051177
Perfectly partitioned numbers: numbers k that divide the number of partitions p(k).
31
1, 2, 3, 124, 158, 342, 693, 1896, 3853, 4434, 5273, 8640, 14850, 17928, 110516, 178984, 274534
OFFSET
1,2
COMMENTS
Are there infinitely many perfectly partitioned numbers? Does there exist some k > 3 for which p(k) is a perfectly partitioned number?
No other terms below 10^8. - Max Alekseyev, May 19 2014
A probabilistic analysis suggests that there are infinitely many terms. - Franklin T. Adams-Watters, Oct 07 2018
REFERENCES
Problem 2464, Journal of Recreational Mathematics 29(4), p. 304.
Solution to problem 2464 "Perfect Partitions", Journal of Recreational Mathematics 30(4), pp. 294-295, 1999-2000.
LINKS
Carlos Rivera, Puzzle 1029. p that divides the number of partitions of p, The Prime Puzzles and Problems Connection.
EXAMPLE
a(4) = 124 because p(124) = 2841940500 is divisible by 124.
a(7) = 693 because partition number of 693 is 43397921522754943172592795 = 693*62623263380598763596815.
MATHEMATICA
Do[ If[ Mod[ PartitionsP@n, n] == 0, Print@n], {n, 250000}] (* Robert G. Wilson v *)
Select[Range[275000], Divisible[PartitionsP[#], #]&] (* Harvey P. Dale, Aug 21 2013~ *)
PROG
(PARI) for(n=1, 20000, if(numbpart(n)%n==0, print1(n, ", "))) \\ Klaus Brockhaus, Sep 06 2006
CROSSREFS
Cf. A000041.
Cf. A093952 = partition number A000041(n) mod n.
Sequence in context: A041813 A065842 A065841 * A371271 A334661 A258968
KEYWORD
nonn,nice,hard,more
AUTHOR
M.A. Muller (mam(AT)land.sun.ac.za)
EXTENSIONS
More terms from Don Reble, Jul 26 2002
STATUS
approved