login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Quotients connected with the Banach matchboxes problem: Sum_{i=1..prime(n)-5} 2^(i-1)*binomial(i+1,2)/prime(n) (case 2).
10

%I #18 Nov 03 2019 19:46:30

%S 0,1,93,571,16143,79333,1755225,160251339,705725473,57691858003,

%T 1057609507815,4500326662525,80662044522801,5995948088798691,

%U 437230824840308493,1820340203482736875,130228506669621162901,2230237339841166071433,9214275012380069727751

%N Quotients connected with the Banach matchboxes problem: Sum_{i=1..prime(n)-5} 2^(i-1)*binomial(i+1,2)/prime(n) (case 2).

%C A general congruence connected with the Banach matchboxes problem is the following: for k=1,2,...,(p-1)/2, Sum_{i=1..p-2k-1} 2^(i-1)*binomial(k-1+i,k) == 0 (mod p) (p is odd prime). If k=1 (case 1), then one can prove that the corresponding quotients are 2^(prime(n)-3) - A007663(n), n >= 2.

%H Vladimir Shevelev, <a href="http://arxiv.org/abs/1110.5686">Banach matchboxes problem and a congruence for primes</a>, arXiv:1110.5686 [math.HO], 2011.

%t Array[Sum[2^(i - 1)*Binomial[i + 1, 2]/#, {i, # - 5}] &@ Prime@ # &, 19, 3] (* _Michael De Vlieger_, Dec 06 2018 *)

%o (PARI) a(n) = sum(i=1, prime(n)-5, 2^(i-1)*binomial(i+1,2))/prime(n); \\ _Michel Marcus_, Dec 06 2018

%Y Cf. A007663, A007619, A238692.

%K nonn

%O 3,3

%A _Vladimir Shevelev_, Mar 03 2014

%E More terms from _Peter J. C. Moses_, Mar 03 2014