login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A325047 Odd coefficients in Sum_{n>=0} x^n * (1 + x^n)^n / (1 - x^(n+1))^(n+1). 2
1, 3, 9, 27, 99, 657, 4109, 14423, 53475, 134523, 1686983, 13421711, 85848955, 325004679, 1482972731, 6258674687, 43509358107, 310036393025, 1197637196163, 5063711906615, 29684695980709, 237651736873787, 1908882337833375, 13472425062258959, 63600578042733379, 259398342483031449, 854224450257439461, 3641411522409674437, 30995855770329029579, 177818838160621615805, 864729932377687089877, 6784148623461403996159 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
a(n) = A325046(n*(n+1)) for n >= 0.
LINKS
FORMULA
a(n) = [x^(n*(n+1))] Sum_{k>=0} x^k * (1 + x^k)^k / (1 - x^(k+1))^(k+1).
a(n) = [x^(n*(n+1))] Sum_{m>=0} x^m * Sum_{k=0..m} binomial(m,k) * (x^m + x^k)^(m-k).
a(n) = [x^(n*(n+1))] Sum_{m>=0} x^m * Sum_{k=0..m} binomial(m,k) * Sum_{j=0..m-k} binomial(m-k,j) * x^((m-k)*(m-j)).
PROG
(PARI) {A325046(n) = my(A=sum(m=0, n, x^m * (1 + x^m +x*O(x^n))^m/(1 - x^(m+1) +x*O(x^n))^(m+1) )); polcoeff(A, n)}
for(n=0, 30, print1(A325046(n*(n+1)), ", "))
CROSSREFS
Cf. A325046, A323679 (variant).
Sequence in context: A148927 A148928 A029527 * A148929 A148930 A230951
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 26 2019
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 13:48 EST 2023. Contains 367691 sequences. (Running on oeis4.)