login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325047
Odd coefficients in Sum_{n>=0} x^n * (1 + x^n)^n / (1 - x^(n+1))^(n+1).
2
1, 3, 9, 27, 99, 657, 4109, 14423, 53475, 134523, 1686983, 13421711, 85848955, 325004679, 1482972731, 6258674687, 43509358107, 310036393025, 1197637196163, 5063711906615, 29684695980709, 237651736873787, 1908882337833375, 13472425062258959, 63600578042733379, 259398342483031449, 854224450257439461, 3641411522409674437, 30995855770329029579, 177818838160621615805, 864729932377687089877, 6784148623461403996159
OFFSET
0,2
COMMENTS
a(n) = A325046(n*(n+1)) for n >= 0.
LINKS
FORMULA
a(n) = [x^(n*(n+1))] Sum_{k>=0} x^k * (1 + x^k)^k / (1 - x^(k+1))^(k+1).
a(n) = [x^(n*(n+1))] Sum_{m>=0} x^m * Sum_{k=0..m} binomial(m,k) * (x^m + x^k)^(m-k).
a(n) = [x^(n*(n+1))] Sum_{m>=0} x^m * Sum_{k=0..m} binomial(m,k) * Sum_{j=0..m-k} binomial(m-k,j) * x^((m-k)*(m-j)).
PROG
(PARI) {A325046(n) = my(A=sum(m=0, n, x^m * (1 + x^m +x*O(x^n))^m/(1 - x^(m+1) +x*O(x^n))^(m+1) )); polcoeff(A, n)}
for(n=0, 30, print1(A325046(n*(n+1)), ", "))
CROSSREFS
Cf. A325046, A323679 (variant).
Sequence in context: A148927 A148928 A029527 * A148929 A148930 A230951
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 26 2019
STATUS
approved