login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Odd coefficients in Sum_{n>=0} x^n * (1 + x^n)^n / (1 - x^(n+1))^(n+1).
2

%I #11 Mar 26 2019 00:53:04

%S 1,3,9,27,99,657,4109,14423,53475,134523,1686983,13421711,85848955,

%T 325004679,1482972731,6258674687,43509358107,310036393025,

%U 1197637196163,5063711906615,29684695980709,237651736873787,1908882337833375,13472425062258959,63600578042733379,259398342483031449,854224450257439461,3641411522409674437,30995855770329029579,177818838160621615805,864729932377687089877,6784148623461403996159

%N Odd coefficients in Sum_{n>=0} x^n * (1 + x^n)^n / (1 - x^(n+1))^(n+1).

%C a(n) = A325046(n*(n+1)) for n >= 0.

%H Paul D. Hanna, <a href="/A325047/b325047.txt">Table of n, a(n) for n = 0..100</a>

%F a(n) = [x^(n*(n+1))] Sum_{k>=0} x^k * (1 + x^k)^k / (1 - x^(k+1))^(k+1).

%F a(n) = [x^(n*(n+1))] Sum_{m>=0} x^m * Sum_{k=0..m} binomial(m,k) * (x^m + x^k)^(m-k).

%F a(n) = [x^(n*(n+1))] Sum_{m>=0} x^m * Sum_{k=0..m} binomial(m,k) * Sum_{j=0..m-k} binomial(m-k,j) * x^((m-k)*(m-j)).

%o (PARI) {A325046(n) = my(A=sum(m=0, n, x^m * (1 + x^m +x*O(x^n))^m/(1 - x^(m+1) +x*O(x^n))^(m+1) )); polcoeff(A, n)}

%o for(n=0, 30, print1(A325046(n*(n+1)), ", "))

%Y Cf. A325046, A323679 (variant).

%K nonn

%O 0,2

%A _Paul D. Hanna_, Mar 26 2019