|
|
A325045
|
|
Number of factorizations of n whose conjugate as an integer partition has no ones.
|
|
4
|
|
|
1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 3, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,16
|
|
COMMENTS
|
After a(1) = 1, a(n) is the number of factorizations of n with at least two factors, the largest two of which are equal.
|
|
LINKS
|
|
|
EXAMPLE
|
The initial terms count the following factorizations:
1: {}
4: 2*2
8: 2*2*2
9: 3*3
16: 2*2*2*2
16: 4*4
18: 2*3*3
25: 5*5
27: 3*3*3
32: 2*2*2*2*2
32: 2*4*4
36: 2*2*3*3
36: 6*6
48: 3*4*4
49: 7*7
50: 2*5*5
54: 2*3*3*3
64: 2*2*2*2*2*2
64: 2*2*4*4
64: 4*4*4
64: 8*8
|
|
MATHEMATICA
|
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
conj[y_]:=If[Length[y]==0, y, Table[Length[Select[y, #>=k&]], {k, 1, Max[y]}]];
Table[Length[Select[facs[n], FreeQ[conj[#], 1]&]], {n, 1, 100}]
|
|
PROG
|
(PARI) A325045(n, m=n, facs=List([])) = if(1==n, (0==#facs || (#facs>=2 && facs[1]==facs[2])), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs, d); s += A325045(n/d, d, newfacs))); (s)); \\ Antti Karttunen, May 03 2022
|
|
CROSSREFS
|
Cf. A001055, A001222, A002865, A096276, A114324, A122111, A318950, A319005, A319916, A320322, A321648, A325039, A353645 [= a(n^2)].
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|