login
A037047
Starting at n, "say what you see"; sequence gives number of primes obtained before first composite number appears.
1
1, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0
OFFSET
1,7
COMMENTS
If n itself is a prime, it is not included in the count. - Antti Karttunen, Feb 13 2019
EXAMPLE
1 -> 11 (prime) -> 21 (composite), so a(1) = 1.
PROG
(PARI)
A045918(a) = { my(c=1); for(j=2, #a=Vec(Str(a)), if(a[j-1]==a[j], a[j-1]=""; c++, a[j-1]=Str(c, a[j-1]); c=1)); a[#a]=Str(c, a[#a]); eval(concat(a)) }; \\ From A045918 by M. F. Hasler, Jan 27 2012
A037047(n) = if(1==n, n, my(c=0); while(1, n = A045918(n); if(isprime(n), c++, return(c)))); \\ Antti Karttunen, Feb 13 2019
CROSSREFS
KEYWORD
nonn,base
EXTENSIONS
More terms from Antti Karttunen, Feb 13 2019
STATUS
approved