login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A321648
Number of permutations of the conjugate of the integer partition with Heinz number n.
19
1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 4, 3, 1, 1, 2, 1, 3, 6, 5, 1, 2, 1, 6, 1, 4, 1, 6, 1, 1, 10, 7, 4, 2, 1, 8, 15, 3, 1, 12, 1, 5, 3, 9, 1, 2, 1, 3, 21, 6, 1, 2, 10, 4, 28, 10, 1, 6, 1, 11, 6, 1, 20, 20, 1, 7, 36, 12, 1, 2, 1, 12, 3, 8, 5, 30, 1, 3, 1, 13
OFFSET
1,6
COMMENTS
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
LINKS
FORMULA
a(n) = A008480(A122111(n)).
EXAMPLE
The a(42) = 12 permutations: (3211), (3121), (3112), (2311), (2131), (2113), (1321), (1312), (1231), (1213), (1132), (1123).
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
conj[y_]:=If[Length[y]==0, y, Table[Length[Select[y, #>=k&]], {k, 1, Max[y]}]];
Table[Length[Permutations[conj[primeMS[n]]]], {n, 50}]
PROG
(PARI)
A008480(n) = {my(sig=factor(n)[, 2]); vecsum(sig)!/factorback(apply(k->k!, sig))}; \\ From A008480
A064989(n) = {my(f); f = factor(n); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f)};
A122111(n) = if(1==n, n, prime(bigomega(n))*A122111(A064989(n)));
A321648(n) = A008480(A122111(n)); \\ Antti Karttunen, Dec 23 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 15 2018
STATUS
approved