login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321648
Number of permutations of the conjugate of the integer partition with Heinz number n.
19
1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 4, 3, 1, 1, 2, 1, 3, 6, 5, 1, 2, 1, 6, 1, 4, 1, 6, 1, 1, 10, 7, 4, 2, 1, 8, 15, 3, 1, 12, 1, 5, 3, 9, 1, 2, 1, 3, 21, 6, 1, 2, 10, 4, 28, 10, 1, 6, 1, 11, 6, 1, 20, 20, 1, 7, 36, 12, 1, 2, 1, 12, 3, 8, 5, 30, 1, 3, 1, 13
OFFSET
1,6
COMMENTS
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
LINKS
FORMULA
a(n) = A008480(A122111(n)).
EXAMPLE
The a(42) = 12 permutations: (3211), (3121), (3112), (2311), (2131), (2113), (1321), (1312), (1231), (1213), (1132), (1123).
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
conj[y_]:=If[Length[y]==0, y, Table[Length[Select[y, #>=k&]], {k, 1, Max[y]}]];
Table[Length[Permutations[conj[primeMS[n]]]], {n, 50}]
PROG
(PARI)
A008480(n) = {my(sig=factor(n)[, 2]); vecsum(sig)!/factorback(apply(k->k!, sig))}; \\ From A008480
A064989(n) = {my(f); f = factor(n); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f)};
A122111(n) = if(1==n, n, prime(bigomega(n))*A122111(A064989(n)));
A321648(n) = A008480(A122111(n)); \\ Antti Karttunen, Dec 23 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 15 2018
STATUS
approved