OFFSET
1,6
COMMENTS
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..16384
EXAMPLE
The a(10) = 6 permutations:
o o o o o o o o
o o o o o o o o
o o o o o o o o
The a(21) = 12 permutations:
o o o o o o o o o o o o o o o o o o
o o o o o o o o o o o o o o o o o o
o o o o o o o o o o o o o o o o o o
o o o o o o o o o o o o o o o o o o
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
conj[y_]:=If[Length[y]==0, y, Table[Length[Select[y, #>=k&]], {k, 1, Max[y]}]];
Table[Length[Permutations[primeMS[n]]]*Length[Permutations[conj[primeMS[n]]]], {n, 50}]
PROG
(PARI)
A064989(n) = {my(f); f = factor(n); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f)};
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 15 2018
EXTENSIONS
More terms from Antti Karttunen, Feb 09 2019
STATUS
approved