login
A321647
Number of distinct row/column permutations of the Ferrers diagram of the integer partition with Heinz number n.
5
1, 1, 1, 1, 1, 4, 1, 1, 1, 6, 1, 6, 1, 8, 6, 1, 1, 6, 1, 9, 12, 10, 1, 8, 1, 12, 1, 12, 1, 36, 1, 1, 20, 14, 8, 12, 1, 16, 30, 12, 1, 72, 1, 15, 9, 18, 1, 10, 1, 9, 42, 18, 1, 8, 20, 16, 56, 20, 1, 72, 1, 22, 18, 1, 40, 120, 1, 21, 72, 72, 1, 20, 1, 24, 9, 24, 10, 180, 1, 15, 1, 26, 1, 144, 70, 28, 90, 20, 1, 72, 30, 27, 110, 30, 112, 12, 1, 12
OFFSET
1,6
COMMENTS
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
LINKS
FORMULA
a(n) = A008480(n) * A008480(A122111(n)) = A008480(n) * A321648(n).
EXAMPLE
The a(10) = 6 permutations:
o o o o o o o o
o o o o o o o o
o o o o o o o o
The a(21) = 12 permutations:
o o o o o o o o o o o o o o o o o o
o o o o o o o o o o o o o o o o o o
o o o o o o o o o o o o o o o o o o
o o o o o o o o o o o o o o o o o o
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
conj[y_]:=If[Length[y]==0, y, Table[Length[Select[y, #>=k&]], {k, 1, Max[y]}]];
Table[Length[Permutations[primeMS[n]]]*Length[Permutations[conj[primeMS[n]]]], {n, 50}]
PROG
(PARI)
A008480(n) = {my(sig=factor(n)[, 2]); vecsum(sig)!/factorback(apply(k->k!, sig))}; \\ From A008480
A064989(n) = {my(f); f = factor(n); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f)};
A122111(n) = if(1==n, n, prime(bigomega(n))*A122111(A064989(n)));
A321647(n) = (A008480(n) * A008480(A122111(n))); \\ Antti Karttunen, Feb 09 2019
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 15 2018
EXTENSIONS
More terms from Antti Karttunen, Feb 09 2019
STATUS
approved