login
A131299
Triangle T(n,k) = 3*binomial(n-floor((k+1)/2), floor(k/2))-2 with k=0..n, read by rows.
3
1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 7, 4, 1, 1, 1, 10, 7, 7, 1, 1, 1, 13, 10, 16, 7, 1, 1, 1, 16, 13, 28, 16, 10, 1, 1, 1, 19, 16, 43, 28, 28, 10, 1, 1, 1, 22, 19, 61, 43, 58, 28, 13, 1, 1, 1, 25, 22, 82, 61, 103, 58, 43, 13, 1, 1, 1, 28, 25, 106, 82, 166
OFFSET
0,9
COMMENTS
Row sums are in A131300. Reversed row triangle = A131301.
From R. J. Mathar, Apr 08 2013: (Start)
The matrix inverse starts
1;
-1, 1;
0, -1, 1;
0, 3, -4, 1;
0, -6, 9, -4, 1;
0, 30, -45, 21, -7, 1;
0, -132, 198, -93, 33, -7, 1;
0, 984, -1476, 693, -246, 54, -10, 1;
0, -6756, 10134, -4758, 1689, -372, 72, -10, 1;
0, 66972, -100458, 47166, -16743, 3687, -714, 102, -13, 1;
(End)
LINKS
Nathaniel Johnston, Rows n = 0..100, flattened
FORMULA
3*A065941 - 2*A000012 as infinite lower triangular matrices.
EXAMPLE
Triangle begins:
1;
1, 1;
1, 1, 1;
1, 1, 4, 1;
1, 1, 7, 4, 1;
1, 1, 10, 7, 7, 1;
1, 1, 13, 10, 16, 7, 1;
...
MAPLE
A131299 := proc(n, k) 3*binomial(n-floor((k+1)/2), floor(k/2))-2 ; end proc; # Nathaniel Johnston, Jun 30 2011
CROSSREFS
KEYWORD
nonn,tabl,easy
AUTHOR
Gary W. Adamson, Jun 27 2007
EXTENSIONS
Better definition from Bruno Berselli, May 03 2012
STATUS
approved