login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A131296
a(n) = ds_5(a(n-1))+ds_5(a(n-2)), a(0)=0, a(1)=1; where ds_5=digital sum base 5.
13
0, 1, 1, 2, 3, 5, 4, 5, 5, 2, 3, 5, 4, 5, 5, 2, 3, 5, 4, 5, 5, 2, 3, 5, 4, 5, 5, 2, 3, 5, 4, 5, 5, 2, 3, 5, 4, 5, 5, 2, 3, 5, 4, 5, 5, 2, 3, 5, 4, 5, 5, 2, 3, 5, 4, 5, 5, 2, 3, 5, 4, 5, 5, 2, 3, 5, 4, 5, 5, 2, 3, 5, 4, 5, 5, 2, 3, 5, 4, 5, 5, 2, 3, 5, 4, 5, 5, 2, 3, 5, 4, 5, 5, 2, 3, 5, 4, 5, 5, 2, 3
OFFSET
0,4
COMMENTS
The digital sum analog (in base 5) of the Fibonacci recurrence.
When starting from index n=3, periodic with Pisano period A001175(4)=6.
a(n) and Fib(n)=A000045(n) are congruent modulo 4 which implies that (a(n) mod 4) is equal to (Fib(n) mod 4)=A079343(n). Thus (a(n) mod 4) is periodic with the Pisano period A001175(4)=6 too.
For general bases p>2, the inequality 2<=a(n)<=2p-3 holds for n>2. Actually, a(n)<=5=A131319(5) for the base p=5.
FORMULA
a(n) = a(n-1)+a(n-2)-4*(floor(a(n-1)/5)+floor(a(n-2)/5)).
a(n) = floor(a(n-1)/5)+floor(a(n-2)/5)+(a(n-1)mod 5)+(a(n-2)mod 5).
a(n) = A002266(a(n-1))+A002266(a(n-2))+A010874(a(n-1))+A010874(a(n-2)).
a(n) = Fib(n)-4*sum{1<k<n, Fib(n-k+1)*floor(a(k)/5)}, where Fib(n)=A000045(n).
EXAMPLE
a(10)=3, since a(8)=5=10(base 5), ds_5(5)=1,
a(9)=2, ds_5(2)=2 and so a(10)=1+2.
MATHEMATICA
nxt[{a_, b_}]:={b, Total[IntegerDigits[a, 5]]+Total[IntegerDigits[b, 5]]}; NestList[nxt, {0, 1}, 100][[;; , 1]] (* Harvey P. Dale, Sep 01 2024 *)
KEYWORD
nonn,base
AUTHOR
Hieronymus Fischer, Jun 27 2007
EXTENSIONS
Incorrect comment removed by Michel Marcus, Apr 29 2018
STATUS
approved