OFFSET
0,4
COMMENTS
The digital sum analog (in base 5) of the Fibonacci recurrence.
When starting from index n=3, periodic with Pisano period A001175(4)=6.
a(n) and Fib(n)=A000045(n) are congruent modulo 4 which implies that (a(n) mod 4) is equal to (Fib(n) mod 4)=A079343(n). Thus (a(n) mod 4) is periodic with the Pisano period A001175(4)=6 too.
For general bases p>2, the inequality 2<=a(n)<=2p-3 holds for n>2. Actually, a(n)<=5=A131319(5) for the base p=5.
LINKS
FORMULA
EXAMPLE
a(10)=3, since a(8)=5=10(base 5), ds_5(5)=1,
a(9)=2, ds_5(2)=2 and so a(10)=1+2.
MATHEMATICA
nxt[{a_, b_}]:={b, Total[IntegerDigits[a, 5]]+Total[IntegerDigits[b, 5]]}; NestList[nxt, {0, 1}, 100][[;; , 1]] (* Harvey P. Dale, Sep 01 2024 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Hieronymus Fischer, Jun 27 2007
EXTENSIONS
Incorrect comment removed by Michel Marcus, Apr 29 2018
STATUS
approved