login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A131295
a(n)=ds_4(a(n-1))+ds_4(a(n-2)), a(0)=0, a(1)=1; where ds_4=digital sum base 4.
14
0, 1, 1, 2, 3, 5, 5, 4, 3, 4, 4, 2, 3, 5, 5, 4, 3, 4, 4, 2, 3, 5, 5, 4, 3, 4, 4, 2, 3, 5, 5, 4, 3, 4, 4, 2, 3, 5, 5, 4, 3, 4, 4, 2, 3, 5, 5, 4, 3, 4, 4, 2, 3, 5, 5, 4, 3, 4, 4, 2, 3, 5, 5, 4, 3, 4, 4, 2, 3, 5, 5, 4, 3, 4, 4, 2, 3, 5, 5, 4, 3, 4, 4, 2, 3, 5, 5, 4, 3, 4, 4, 2, 3, 5, 5, 4, 3, 4, 4, 2, 3
OFFSET
0,4
COMMENTS
The digital sum analog (in base 4) of the Fibonacci recurrence.
When starting from index n=3, periodic with Pisano period A001175(3)=8.
Also a(n)==A004090(n) modulo 3 (A004090(n)=digital sum of Fib(n)).
For general bases p>2, the inequality 2<=a(n)<=2p-3 holds for n>2. Actually, a(n)<=5=A131319(4) for the base p=4.
a(n) and Fib(n)=A000045(n) are congruent modulo 3 which implies that (a(n) mod 3) is equal to (Fib(n) mod 3)=A082115(n-1) (for n>0). Thus (a(n) mod 3) is periodic with the Pisano period = A001175(3)=8 too. - Hieronymus Fischer
FORMULA
a(n)=a(n-1)+a(n-2)-3*(floor(a(n-1)/4)+floor(a(n-2)/4)).
a(n)=floor(a(n-1)/4)+floor(a(n-2)/4)+(a(n-1)mod 4)+(a(n-2)mod 4).
a(n)=A002265(a(n-1))+A002265(a(n-2))+A010873(a(n-1))+A010873(a(n-2)).
a(n)=Fib(n)-3*sum{1<k<n, Fib(n-k+1)*floor(a(k)/4)}, where Fib(n)=A000045(n).
EXAMPLE
a(8)=3, since a(6)=5=11(base 4), ds_4(5)=2,
a(7)=4=10(base 4), ds_4(4)=1 and so a(8)=2+1.
MATHEMATICA
nxt[{a_, b_}]:={b, Total[IntegerDigits[a, 4]]+Total[IntegerDigits[b, 4]]}; NestList[ nxt, {0, 1}, 110][[All, 1]] (* Harvey P. Dale, Jul 30 2018 *)
KEYWORD
nonn,base
AUTHOR
Hieronymus Fischer, Jun 27 2007
STATUS
approved