login
A131294
a(n)=ds_3(a(n-1))+ds_3(a(n-2)), a(0)=0, a(1)=1; where ds_3=digital sum base 3.
14
0, 1, 1, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3
OFFSET
0,4
COMMENTS
The digital sum analog (in base 3) of the Fibonacci recurrence.
When starting from index n=3, periodic with Pisano period A001175(2)=3.
a(n) and Fib(n)=A000045(n) are congruent modulo 2 which implies that (a(n) mod 2) is equal to (Fib(n) mod 2)=A011655(n). Thus (a(n) mod 2) is periodic with the Pisano period A001175(2)=3 too.
For general bases p>2, we have the inequality 2<=a(n)<=2p-3 (for n>2). Actually, a(n)<=3=A131319(3) for the base p=3.
FORMULA
a(n) = a(n-1)+a(n-2)-2*(floor(a(n-1)/3)+floor(a(n-2)/3)).
a(n) = floor(a(n-1)/3)+floor(a(n-2)/3)+(a(n-1)mod 3)+(a(n-2)mod 3).
a(n) = A002264(a(n-1))+A002264(a(n-2))+A010872(a(n-1))+A010872(a(n-2)).
a(n) = Fib(n)-2*sum{1<k<n, Fib(n-k+1)*floor(a(k)/3)}, where Fib(n)=A000045(n).
EXAMPLE
a(5)=3, since a(3)=2, ds_3(2)=2, a(4)=3=10(base 3),
ds_3(3)=1 and so a(5)=2+1.
MATHEMATICA
nxt[{a_, b_}]:={b, Total[IntegerDigits[a, 3]]+Total[IntegerDigits[b, 3]]}; Transpose[NestList[nxt, {0, 1}, 100]][[1]] (* Harvey P. Dale, Aug 02 2016 *)
KEYWORD
nonn,base
AUTHOR
Hieronymus Fischer, Jun 27 2007
EXTENSIONS
Incorrect comment removed by Michel Marcus, Apr 29 2018
STATUS
approved