OFFSET
1,2
COMMENTS
Conjecture: a(n) > 0 for all n > 0, and a(n) = 1 only for n = 1, 10, 35, 75, 134, 415, 515, 1465, 2365, 3515, 4140.
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Zhi-Wei Sun, On universal sums of polygonal numbers, Sci. China Math. 58(2015), no. 7, 1367-1396.
EXAMPLE
a(1) = 1 since 1 = 0^4 + 1*2/2 + p_5(0), where p_5(n) denotes the pentagonal number n*(3*n-1)/2.
a(10) = 1 since 10 = 0^4 + 4*5/2 + p_5(0).
a(35) = 1 since 35 = 1^4 + 4*5/2 + 2*p_5(3).
a(75) = 1 since 75 = 2^4 + 5*6/2 + 2*p_5(4).
a(134) = 1 since 134 = 2^4 + 1*2/2 + p_5(9).
a(415) = 1 since 415 = 0^4 + 21*22/2 + 2*p_5(8).
a(515) = 1 since 515 = 0^4 + 6*7/2 + 2*p_5(13).
a(1465) = 1 since 1465 = 5^4 + 35*36/2 + p_5(12).
a(2365) = 1 since 2365 = 5^4 + 8*9/2 + 2*p_5(24).
a(3515) = 1 since 3515 = 5^4 + 51*52/2 + 2*p_5(23).
a(4140) = 1 since 4140 = 1^4 + 90*91/2 + 2*p_5(4).
MATHEMATICA
PenQ[n_]:=IntegerQ[Sqrt[24n+1]]&&(n==0||Mod[Sqrt[24n+1]+1, 6]==0)
PQ[n_]:=PenQ[n]||PenQ[n/2]
Do[r=0; Do[If[PQ[n-x^4-y(y+1)/2], r=r+1], {x, 0, n^(1/4)}, {y, 1, (Sqrt[8(n-x^4)+1]-1)/2}]; Print[n, " ", r]; Continue, {n, 1, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Oct 05 2015
STATUS
approved