login
A262955
Number of ordered pairs (x,y) with x >= 0 and y > 0 such that n - x^4 - y*(y+1)/2 is a pentagonal number (A000326) or twice a pentagonal number.
13
1, 2, 3, 3, 2, 3, 3, 3, 2, 1, 4, 4, 3, 2, 3, 5, 4, 3, 3, 3, 4, 5, 5, 4, 3, 5, 6, 5, 5, 3, 6, 4, 4, 4, 1, 4, 5, 7, 6, 2, 6, 3, 3, 3, 5, 8, 5, 4, 3, 5, 4, 4, 4, 5, 5, 5, 7, 4, 3, 3, 7, 3, 3, 2, 2, 8, 5, 6, 2, 3, 5, 7, 6, 2, 1, 4, 4, 3, 6, 7, 6, 3, 5, 4, 3, 2, 6, 6, 6, 4, 6, 8
OFFSET
1,2
COMMENTS
Conjecture: a(n) > 0 for all n > 0, and a(n) = 1 only for n = 1, 10, 35, 75, 134, 415, 515, 1465, 2365, 3515, 4140.
LINKS
Zhi-Wei Sun, On universal sums of polygonal numbers, Sci. China Math. 58(2015), no. 7, 1367-1396.
EXAMPLE
a(1) = 1 since 1 = 0^4 + 1*2/2 + p_5(0), where p_5(n) denotes the pentagonal number n*(3*n-1)/2.
a(10) = 1 since 10 = 0^4 + 4*5/2 + p_5(0).
a(35) = 1 since 35 = 1^4 + 4*5/2 + 2*p_5(3).
a(75) = 1 since 75 = 2^4 + 5*6/2 + 2*p_5(4).
a(134) = 1 since 134 = 2^4 + 1*2/2 + p_5(9).
a(415) = 1 since 415 = 0^4 + 21*22/2 + 2*p_5(8).
a(515) = 1 since 515 = 0^4 + 6*7/2 + 2*p_5(13).
a(1465) = 1 since 1465 = 5^4 + 35*36/2 + p_5(12).
a(2365) = 1 since 2365 = 5^4 + 8*9/2 + 2*p_5(24).
a(3515) = 1 since 3515 = 5^4 + 51*52/2 + 2*p_5(23).
a(4140) = 1 since 4140 = 1^4 + 90*91/2 + 2*p_5(4).
MATHEMATICA
PenQ[n_]:=IntegerQ[Sqrt[24n+1]]&&(n==0||Mod[Sqrt[24n+1]+1, 6]==0)
PQ[n_]:=PenQ[n]||PenQ[n/2]
Do[r=0; Do[If[PQ[n-x^4-y(y+1)/2], r=r+1], {x, 0, n^(1/4)}, {y, 1, (Sqrt[8(n-x^4)+1]-1)/2}]; Print[n, " ", r]; Continue, {n, 1, 100}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Oct 05 2015
STATUS
approved